Previous |  Up |  Next

Article

References:
[1] A. Baddeley, L. M. Cruz-Orive: The Rao-Blackwell theorem in stereology and some counterexamples. Adv. in Appl. Probab. 27 (1995), 2-19. MR 1315573 | Zbl 0818.60010
[2] V. Beneš A. M. Gokhale, M. Slámova: Unfolding the bivariate size-orientation distribution. Acta Stereol. 15, (1996), 1, 9-14.
[3] R. Coleman: Inverse problems. J. Microsc. 153 (1989), 3, 233-248.
[4] L. M. Cruz-Orive: Particle size-shape distributions: The general spheroid problem, I., II. J. Microsc. 107 (1976), 3, 235-253, 112 (1978), 153-167.
[5] W. Gerlach, J. Ohser: On the accurancy of numerical solutions for some stereological problems as the Wicksell corpuscule problem. J. Biomath. 28 (1986), 7, 881-887. MR 0872774
[6] A. M. Gokhale: Estimation of bivariate size and orientation distribution of microcracks. Acta Metall. and Mater. 44 (1996), 2, 475-485.
[7] I. S. Gradshtejn, I. M. Ryzhik: Tables of Integrals, Sums, Series and Products. GIFML Moscow 1963. (In Russian.)
[8] L. M. Karlsson, L. M. Cruz-Orive: The new stereological tools in metallography: estimation of pore size and number in aluminium. J. Microscopy 165 (1992), 3, 391-415.
[9] A. Kleinwachter, M. Zähle: Size distribution stereology for quasiellipsoids in $R^n$. Math. Oper. Stat. 17 (1986), 332-335. MR 0849742
[10] P. Mikusinski H. Sherwood, M. D. Taylor: Probabilistic interpretations of copulas and their convex sums. In: Advances in Probability Distributions with Given Marginals (Dall'Aglio et al, eds.), Kluwer Acad. Publ., Dordrecht 1991, pp. 95-112. MR 1215947
[11] J. Møller: Stereological analysis of particles of varying ellipsoidal shape. J. Appl. Probab. 25 (1988), 322-335. MR 0938196
[12] J. Ohser, F. Mücklich: Stereology for some classes of polyhedrons. Adv. in Appl. Probab. 27 (1995), 2, 384-96. MR 1334820
[13] B. W. Silvermann M. C. Jones D. W. Nychka, J. D. Wilson: A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography. J. Roy. Statist. Soc. Ser. B 52 (1990), 271-324. MR 1064419
[14] C. van Putten, J. H. van Schuppen: Invariance properties of the conditional independence relation. Ann. Probab. 13 (1985), 3, 934-945. MR 0799429 | Zbl 0576.60002
[15] S. D. Wicksell: The corpuscule problem. A mathematical study of a biometrical problem. Biometrika 17 (1925), 84-88.
Partner of
EuDML logo