Previous |  Up |  Next

Article

Title: Suboptimal control of linear delay systems via Legendre series (English)
Author: Razzaghi, M.
Author: Habibi, M. F.
Author: Fayzebakhsh, R.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 5
Year: 1995
Pages: 509-518
.
Category: math
.
MSC: 49K25
MSC: 49M29
MSC: 49M30
idZBL: Zbl 0897.49018
idMR: MR1361311
.
Date available: 2009-09-24T18:57:59Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124779
.
Reference: [1] M. Jamshidi, C. M. Wang: A computational algorithm for large-scale nonlinear time-delays systems.IEEE Trans. Systems Man Cybernet. SMC-14 (1984), 2-9. MR 0740948
Reference: [2] G. L. Kharatishvili: The maximum principle in the theory of optimal process with time-lags.Dokl. Akad. Nauk SSSR 136 (1961), 39-42. MR 0123073
Reference: [3] K. Inoue H. Akaski K. Ogino, Y. Sawaragi: Sensitivity approaches to optimization of linear system with time delay.Automatica 7 (1971), 671-679. MR 0320869
Reference: [4] M. Jamshidi, M. Razzaghi: Optimization of linear systems with input time-delay.Kybernetika 11 (1975), 375-384. Zbl 0333.49036, MR 0446641
Reference: [5] M. MaleK-Zavarei: Near-optimum design of nonstationary linear systems with state and control delays.J. Optim. Theory Appl. 50 (1980), 73-88. Zbl 0394.49017, MR 0562197
Reference: [6] M. S. Corrington: Solutions of differential and integral equations with Walsh functions.IEEE Trans. Circuit Theory 20 (1973), 470-476.
Reference: [7] C. Hwang, Y. P. Shih: Optimal control of delay systems via block pulse functions.J. Optim. Theory Appl. 45 (1985), 101-112. Zbl 0541.93031, MR 0778160
Reference: [8] P. N. Paraskevopoulo P. G. Sklavounos, G. Ch. Georgiou: The operation matrix of integration for Bessel functions.J. Franklin Inst. 557 (1990), 329-341. MR 1042680
Reference: [9] C. Hwang, Y. P. Shih: Solution of integral equations via Laguerre polynomias.Comput. Electr. Engrg. 9 (1982), 123-129.
Reference: [10] M. Razzaghi, M. Razzaghi: Solution of linear two-point boundary value problems and optimal control of time-varying systems by shifted Chebyshev approximations.J. Franklin Inst. 557 (1990), 321-328. Zbl 0714.49032, MR 1042679
Reference: [11] I. R. Horng, J. H. Chou: Analysis, parameter estimation and optimal control of time-delay systems via Chebyshev series.Internat. J. Control 41 (1985), 1221-1234. Zbl 0562.93034, MR 0792938
Reference: [12] M. H. Perng: Direct approach for the optimal control of linear time-delay systems via shifted Legendre polynomials.Internat. J. Control 43 (1986), 1897-1904. Zbl 0586.93026
Reference: [13] M. Razzaghi M. Razzaghi, and A. Arabshahi: Solutions of convolution integral and Fredholm integral equation via double Fourier series.Appl. Math. Comput. 40 (1990), 215-224. MR 1082397
Reference: [14] C. Hwang, M. Y. Chen: A direct approach using the shifted Legendre series expansion for near optimum control of linear time-varying systems with multiple state and control delays.Internat. J. Control 43 (1986), 1673-1692. Zbl 0586.93048
Reference: [15] I. S. Gradshteyn, I. M. Ryzhik: Tables of Integrals, Series and Products.Academic Press, New York 1979.
Reference: [16] C. Canuto M. Y. Hussaini, and T. A. Zang: Spectral Methods in Fluid Dynamics.Springer-Verlag, New York 1988. MR 0917480
Reference: [17] P. Lancaster: Theory of Matrices.Academic Press, New York 1969. Zbl 0186.05301, MR 0245579
.

Files

Files Size Format View
Kybernetika_31-1995-5_7.pdf 728.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo