Previous |  Up |  Next

Article

Title: Hellinger integrals, contiguity and entire separation (English)
Author: Liese, Friedrich
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 23
Issue: 2
Year: 1987
Pages: 104-123
.
Category: math
.
MSC: 60A10
MSC: 60E99
MSC: 60G30
MSC: 60G42
MSC: 62B99
MSC: 62F05
MSC: 62M02
idZBL: Zbl 0638.60001
idMR: MR886824
.
Date available: 2009-09-24T17:58:41Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124873
.
Reference: [1] G. K. Eagleson: An extended dichotomy theorem for sequences of pairs of Gaussian measures.Ann. Probab. 9 (1981), 3, 453-459. Zbl 0462.60042, MR 0614629
Reference: [2] G K. Eagleson, I. Memin: Sur la contiguite de deux suites de mesures: generalization d'un theoreme de Kabonov-Liptser-Shiryayev, Seminaire Probability XVI.Lecture. Notes 920, Springer-Verlag, Berlin-Heidelberg-New York 1982.
Reference: [3] J. Kerstan, F. Liese: Zur Existenz bedingter Verteilungsgesetze I.Math. Nachrichten 61 (1974), 279-310. Zbl 0287.60006, MR 0356152
Reference: [4] F. Liese: Estimates of Hcliinger integrals of discrete time stochastic processes, Forschungserg.FSU Jena Nr. 84/51 and Proc. "Colloquium on Goodness of Fit" Debrecen 1984, 355-368. MR 0892338
Reference: [5] F. Liese: Hellinger integrals, error probabilities and contiguity of Gaussian processes with independent increments and Poisson processes.Journal of Information Processing and Cybernetics-EIK 21 (1985), 297-312. Zbl 0582.62075, MR 0806287
Reference: [6] R. Ch. Liptser F. Pukelsheim, A. N. Shiryayev: On necessary and sufficient conditions for contiguity and entire separation of probability measures.Uspeki Math. Nauk 37 (6) (1982), 97-124. MR 0683275
Reference: [7] R. Ch. Liptser, A. N. Shiryayev: Statistics of Random Processes, Vol. I, II.Springer-Verlag, Berlin-Heidelberg-New York 1978.
Reference: [8] T. Nemetz: Equivalence orthogonality dichotomies of probability measures.Proc. Coll. on Limit Theorems of Prob. Theory and Stat. Keszthely 1974. MR 0394852
Reference: [9] C. M. Newman: The inner product of path space measures corresponding to random processes with independent increments.Bull. Amer. Math. Soc. 78 (1972), 2. Zbl 0233.60041, MR 0290453
Reference: [10] S. Orey: Limit Theorems for Markov Chain Transition Probabilities.Van Nostrand, New York-Cincinnati-Toronto -Melbourne 1971. Zbl 0295.60054, MR 0324774
.

Files

Files Size Format View
Kybernetika_23-1987-2_2.pdf 1.256Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo