Previous |  Up |  Next

Article

Title: Block bialternate sum with applications to computation of stability bounds (English)
Author: Ghosh, R.
Author: Sen, S.
Author: Datta, K. B.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 33
Issue: 4
Year: 1997
Pages: 445-461
.
Category: math
.
MSC: 93B40
MSC: 93C70
MSC: 93D09
idZBL: Zbl 0943.93047
idMR: MR1471388
.
Date available: 2009-09-24T19:10:30Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124884
.
Reference: [1] J. B. Brewer: Kronecker products and matrix calculus in system theory.IEEE Trans. Circuits and Systems 25 (1978), 772-781. , Zbl 0397.93009, MR 0510703
Reference: [2] A. T. Fuller: Conditions for a matrix to have only characteristic roots with negative real parts.J. Math. Anal. Appl. 23 (1968), 71-98. Zbl 0157.15705, MR 0228517
Reference: [3] D. C. Hyland, E. G. Collins: Block Kronecker products and block norm matrices in large-scale systems analysis.SIAM J. Matrix Anal. Appl. 10 (1989), 18-29. Zbl 0684.15010, MR 0976149
Reference: [4] P. T. Kokotović H. K. Khalil, J. O'Reilly: Singular Perturbation Methods in Control: Analysis and Design.Academic Press, London 1986. MR 0950486
Reference: [5] J. Lunze: Determination of robust multivariable I-controllers by means of experiments and simulation.Systems Anal. Modelling Simulation 2 (1985), 227-249. Zbl 0569.93045, MR 0824473
Reference: [6] J. R. Magnus: Linear Structures.Griffin, London 1988. Zbl 0667.15010, MR 0947343
Reference: [7] M. Morari: Robust stability of systems with integral control.IEEE Trans. Automat. Control 30 (1985), 574-577. Zbl 0558.93069, MR 0789328
Reference: [8] D. Mustafa: Block Lyapunov sum with applications to integral controllability and maximal stability of singularly perturbed systems.Internat. J. Control 61 (1995), 47-63. Zbl 0817.93009, MR 1619710
Reference: [9] S. Sen, K. B. Datta: Stability bounds of singularly perturbed systems.IEEE Trans. Automat. Control 38 (1993), 302-304. MR 1206817
Reference: [10] S. Sen R. Ghosh, K. B. Datta: Stability bounds for high-gain feedback systems.J. Inst. Engineers, submitted.
Reference: [11] A. Tesi, A. Vicino: Robust stability of state-space models with structured uncertainties.IEEE Trans. Automat. Control 35 (1990), 191-195. Zbl 0705.93061, MR 1038416
Reference: [12] K. D. Young P. T. Kokotović, V. Utkin: Singular perturbation analysis of high-gain feedback systems.IEEE Trans. Automat. Control 22 (1977), 931-938. MR 0476055
.

Files

Files Size Format View
Kybernetika_33-1997-4_7.pdf 1.475Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo