Previous |  Up |  Next

Article

Title: Logarithmic information of degree $q$ linked with an extension of Fisher's information (English)
Author: Bouchon, Bernadette
Author: Pessoa, Franquiberto
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 21
Issue: 5
Year: 1985
Pages: 346-359
.
Category: math
.
MSC: 62B10
MSC: 62F10
MSC: 94A15
idZBL: Zbl 0595.62001
idMR: MR818887
.
Date available: 2009-09-24T17:49:18Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124992
.
Reference: [1] N. L. Aggarwal: Measures d'information et questionnaires arborescents.Thése, Besancon 1974.
Reference: [2] D. E. Boekee: Generalized Fisher information with application to estimation problems.In: Information and Systems (Proc. IFAC Workshop, Compiegne, 1977), pp. 75-82. Pergamon Press, Oxford 1978. MR 0531027
Reference: [3] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations.Studia Sci. Math. (1967), 2, 299-316. MR 0219345
Reference: [4] P. E. Ferreira: Miscellanea, extending Fisher's measure of information.Biometrika 68 (1981), 3, 695-698. MR 0637790
Reference: [5] J. J. Gart: An extension of the Cramer-Rao inequality.Ann. Math. Statist. 30 (1959), 367- 379. Zbl 0093.15804, MR 0106524
Reference: [6] G. G. Roussas: A First Course in Mathematical Statistics.Addision-Wesley, 1973. Zbl 0271.62001
Reference: [7] I. Vajda: $\chi^\alpha$-divergence and generalized Fisher's information.In: Trans. 6th Prague Conf. on Inform. Theory, Statist. Dec. Functions and Random Processes, pp. 873 - 886. Academia, Prague 1973. MR 0356302
Reference: [8] I. Vincze: On the Cramer-Fréchet-Rao inequality in the non regular case.In: Contributions to Statistics (J. Hajek Memorial Volume), pp. 253 - 262. Academia, Prague 1979. Zbl 0419.62029, MR 0561273
.

Files

Files Size Format View
Kybernetika_21-1985-5_3.pdf 1.134Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo