Previous |  Up |  Next

Article

Title: Control of nonholonomic systems via dynamic compensation (English)
Author: De Luca, Alessandro
Author: Di Benedetto, Marika D.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 29
Issue: 6
Year: 1993
Pages: 593-608
.
Category: math
.
MSC: 70F25
MSC: 70Q05
MSC: 93B52
MSC: 93C10
idZBL: Zbl 0802.93023
idMR: MR1264889
.
Date available: 2009-09-24T18:44:04Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125032
.
Reference: [1] A. M. Bloch, N. H. McClamroch: Control of mechanical systems with classical nonholonomic constraints.In: Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, 1989, pp. 201-205. MR 1038930
Reference: [2] A.M. Bloch M. Reyhanoglu, N. H. McClamroch: Control and stabilization of nonholonomic dynamic systems.IEEE Trans. Automat. Control 57 (1992), 11, 1746-1757. MR 1195215
Reference: [3] R. W. Brockett: Asymptotic stability and feedback stabilization.In: Differential Geometric Control Theory (R. Brockett, R. S. Millmann and H.J. Sussmann, eds.), Birkhauser, Boston, MA, 1983, pp. 181-191. Zbl 0528.93051, MR 0708502
Reference: [4] G. Campion B. d'Andrea-Novel, G. Bastin: Structural properties of nonholonomic mechanical systems.In: Proc. 1st European Control Conference, Grenoble 1991, pp. 2089-2094.
Reference: [5] C. Canudas de Wit, O. J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints.IEEE Trans. Automat. Control 57 (1992), 11, 1791-1797. MR 1195224
Reference: [6] J.-M. Coron: Global asymptotic stabilization for controllable systems without drift.Math. Control Signals Systems 5 (1992), 295-312. Zbl 0760.93067, MR 1164379
Reference: [7] B. d'Andrea-Novel G. Bastin, G. Campion: Dynamic feedback linearization of nonholonomic wheeled mobile robots.In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 2527-2532.
Reference: [8] A. De Luca L. Lanari, G. Oriolo: Control of redundant robots on cyclic trajectories.In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 500-506.
Reference: [9] J. Descusse, D. H. Moog: Dynamic decoupling for right-invertible nonlinear systems.Systems Control Lett. 8 (1987), 345-349. Zbl 0617.93024, MR 0884884
Reference: [10] M. D. Di Benedetto, J. W. Grizzle: An analysis of regularity conditions in nonlinear synthesis.In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds., Lecture Notes in Control and Information Sciences 144), Springer-Verlag, Berlin - Heidelberg - New York 1990, pp. 843-850. Zbl 0709.93040
Reference: [11] A. Isidori: Nonlinear Control Systems.Second edition. Springer-Verlag, Berlin - Heidelberg - New York 1989.
Reference: [12] G. Lafferriere, H. J. Sussmann: Motion planning for controllable systems without drift: A preliminary report.Report SYCON-90-04, Rutgers University, N.J., July 1990.
Reference: [13] J. P. Laumond: Nonholonomic motion planning versus controllability via the multibody car system example.Report STAN-CS-90-1345, Stanford University, CA, December 1990.
Reference: [14] R. Marino: On the largest feedback linearizable subsystem.Systems Control Lett. 6 (1986), 345-351. MR 0821930
Reference: [15] R. M. Murray, S. S. Sastry: Steering nonholonomic systems in chained form.In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1121-1126.
Reference: [16] G. Oriolo, Y. Nakamura: Control of mechanical systems with second-order non-holonomic constraints: Underactuated manipulators.In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 2394-2403.
Reference: [17] J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift.Systems Control Lett. 18 (1992), 147-158. Zbl 0744.93084, MR 1149359
Reference: [18] J.-B. Pomet B. Thuilot G. Bastin, G. Campion: A hybrid strategy for the feed- back stabilization of nonholonomic mobile robots.In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 129-134.
Reference: [19] M. Reyhanoglu, N. H. McClamroch: Reorientation of space multibody systems maintaining zero angular momentum.In: Proc. 1991 AIAA Conf. on Guidance, Navigation, and Control, New Orleans 1991, pp. 1330-1340.
Reference: [20] C. Samson, K. Ait-Abderrahim: Feedback control of a nonholonomic wheeled cart in cartesian space.In: Proc. 1991 IEEE Internat. Conf. on Robotics and Automation, Sacramento 1991, pp. 1136-1141.
Reference: [21] H. J. Sussmann: A general theorem on local controllability.SIAM J. Control Optim. 25 (1987), 1, 158-194. Zbl 0629.93012, MR 0872457
Reference: [22] H. J. Sussmann: Local controllability and motion planning for some classes of systems with drift.In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1110-1114.
Reference: [23] Z. Vafa, S. Dubowsky: The kinematics and dynamics of space manipulators: The virtual manipulator approach.Internat. J. Robotics Research 9 (1990), 4, 3-21.
.

Files

Files Size Format View
Kybernetika_29-1993-6_6.pdf 800.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo