Previous |  Up |  Next

Article

Title: On the cover problems of geometric theory (English)
Author: Karcanias, Nicos
Author: Vafiadis, Dimitris
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 29
Issue: 6
Year: 1993
Pages: 547-562
.
Category: math
.
MSC: 15A22
MSC: 93B27
idZBL: Zbl 0821.93026
idMR: MR1264886
.
Date available: 2009-09-24T18:43:43Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125037
.
Reference: [1] A. C. Antoulas: New results on the algebraic theory of linear systems: the solution of cover problems.Linear Algebra Appl. 50 (1983), 1-43. MR 0699558
Reference: [2] E. Emre L. M. Silverman, K. Glover: Generalised dynamic covers for linear systems with applications to deterministic identification problems.IEEE Trans. Automat. Control AC-22 (1977), 26-35. MR 0444165
Reference: [3] S. Jaffe, N. Karcanias: Matrix pencil characterisation of almost (A, B)-invariant subspaces: a classification of geometric concepts.Internat. J. Control 33(1981), 51-93. MR 0607261
Reference: [4] N. Karcanias: Matrix pencil approach to geometric system theory.Proc. IEE 126 (1990), 585-590. MR 0536439
Reference: [5] N. Karcanias: The global role of instrumentation in systems design and control.The concise Encyclopedia of Measurement and Instrumentation, Pergamon Press, to appear.
Reference: [6] N. Karcanias: Proper invariant realisations of singular system problems.IEEE Trans. Automat. Control AC-35 (1990), 230-233. MR 1038428
Reference: [7] N. Karcanias, B. Kouvaritakis: The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach.Internat. J. Control 30 (1979), 395-415. Zbl 0434.93018, MR 0543563
Reference: [8] N. Karcanias, C. Giannacopoulos: Necessary and sufficient conditions for zero assignment by constant squaring down.Linear Algebra Appl., Special issue on control theory 122/123/124 (1989), 415-446. MR 1019995
Reference: [9] N. Karcanias, G. Kalogeropoulos: Geometric theory and feedback invariants of generalized linear systems: a matrix pencil approach.Circuits Systems Signal Process. 5 (1989), 3, 375-397. Zbl 0689.93016, MR 1015178
Reference: [10] A. S. Morse: Minimal solutions to transfer matrix equations.IEEE Trans. Automat. Control AC-18(1973), 346-354. MR 0395957
Reference: [11] R. C. Thompson: Interlacing inequalities for invariant factors.Linear Algebra Appl. 24 (1979), 1-31. Zbl 0395.15003, MR 0524823
Reference: [12] J. C. Willems: Almost invariant subspaces: an approach to high gain feedback design - Part I, almost controlled invariant subspaces.IEEE Trans. Automat. Control AC-26 (1981), 235-252. MR 0609263
Reference: [13] W. M. Wonham: Linear Multivariate Control: A Geometric Approach.Springer-Verlag, New York 1979. MR 0522868
Reference: [14] W. M. Wonham, A. S. Morse: Feedback invariants for linear multivariable systems.Automatica 8 (1972), 93-100. MR 0392060
Reference: [15] F. R. Gantmacher: The Theory of Matrices. Volume I, II.Chelsea, New York 1959.
.

Files

Files Size Format View
Kybernetika_29-1993-6_3.pdf 850.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo