Previous |  Up |  Next

Article

Title: Weak conditions for the existence of optimal stationary policies in average Markov decision chains with unbounded costs (English)
Author: Cavazos-Cadena, Rolando
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 25
Issue: 3
Year: 1989
Pages: 145-156
.
Category: math
.
MSC: 60J05
MSC: 90C40
idZBL: Zbl 0673.90092
idMR: MR1010178
.
Date available: 2009-09-24T18:11:16Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125085
.
Reference: [1] A. Hordijk: Dynamic Programming and Potential Theory.(Mathematical Centre Tract 51.) Mathematisch Centrum, Amsterdam 1974. MR 0432227
Reference: [2] D. P. Heyman, M. J. Sobel: Stochastic Models in Operations Research, Vol. II.McGraw-Hill, New York 1984. Zbl 0531.90062
Reference: [3] J. Dugundji: Topology.Allyn and Bacon, Boston 1966. Zbl 0144.21501, MR 0193606
Reference: [4] L. C. Thomas: Connectedness conditions for denumerable state Markov decision processes.In: Recent Developments in Markov Decision Processes (Hartley, Thomas, White, eds.), Academic Press, New York 1981, pp. 181-204.
Reference: [5] L. I. Sennott: A new condition for the existence of optimal stationary policies in average cost Markov decision processes.Oper. Res. Lett. 5 (1986), 17-23. Zbl 0593.90083, MR 0845763
Reference: [6] L. I. Sennott: A new condition for the existence of optimum stationary policies in average cost Markov decision processes -- unbounded cost case.Proceedings of the 25th IEEE Conf. on Dec. and Control, Athens, Greece 1986, pp. 1719-1721.
Reference: [7] L. I. Sennott: Average cost optimal stationary policies in infinite state Markov decision processes -- Existence and an algorithm.Submitted (1987).
Reference: [8] M. Loève: Probability Theory I.Springer-Verlag, New York--Berlin--Heidelberg 1977. MR 0651017
Reference: [9] P. Nain, K. W. Ross: Optimal priority assignement with hard constraints.Submitted to IEEE Trans. Automat. Control (1986). MR 0855542
Reference: [10] R. Cavazos-Cadena: Necessary conditions for the optimality equation in average-reward Markov decision processes.Appl. Math. Optim. 19 (1989), 1, 97-112. Zbl 0663.90094, MR 0955092
Reference: [11] R. Cavazos-Cadena: Necessary and sufficient conditions for a bounded solution to the optimality equation in average reward Markov decision chains.System Control Lett. 10 (1988), 71-78. Zbl 0645.90099, MR 0920807
Reference: [12] R. B. Ash: Real Analysis and Probability.Academic Press, New York 1972. MR 0435320
Reference: [13] S. M. Ross: Applied Probability Models with Optimization Applications.Holden-Day, San Francisco 1970. Zbl 0213.19101, MR 0264792
Reference: [14] S. M. Ross: Introduction to Stochastic Dynamic Programming.Academic Press, New York 1983. Zbl 0567.90065, MR 0749232
.

Files

Files Size Format View
Kybernetika_25-1989-3_1.pdf 646.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo