Previous |  Up |  Next

Article

Title: On transformations of multivariate ARMA processes (English)
Author: Linka, Aleš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 24
Issue: 2
Year: 1988
Pages: 122-129
.
Category: math
.
MSC: 62M10
idZBL: Zbl 0637.62084
idMR: MR942379
.
Date available: 2009-09-24T18:05:12Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125129
.
Reference: [1] J. Anděl: Statistická analýza časových řad.(Statistical Analysis of Time Series.) SNTL, Praha 1976.
Reference: [2] E. M. R. A. Engel: A unified approach to the study of sums, products, time aggregation and other functions of ARMA processes.J. Time Series Anal. 5 (1984), 159-171. Zbl 0541.62072, MR 0770319
Reference: [3] J. W. C. Granger, M. J. Morris: Time series modelling and interpretation.J. Roy. Statist. Soc. Ser. A 138 (1976), 246-257. MR 0461816
Reference: [4] I. I. Gichman, A. V. Skorochod: Teorija slučajnych processov.Nauka, Moskva 1971.
Reference: [5] E. J. Hannan: Multiple Time Series.Wiley, New York 1971. MR 0279952
Reference: [6] E. J. Hannan: The identification of vector mixed autoregressive-moving average systems.Biometrika 56 (1969), 223-225. Zbl 0177.22502, MR 0254998
Reference: [7] L. Isserlis: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables.Biometrika 12 (1918), 134-239.
Reference: [8] H. Lütkepohl: Linear transformations of vector ARMA processes.J. Econometrics 26 (1984), 283-293. MR 0769988
Reference: [9] J. A. Rozanov: Stacionarnyje slučajnyje processy.Gos. izd., Moskva 1963.
Reference: [10] E. W. Wecker: A note on the time series which is the product of two stationary time series.Stoch. Proc. Appl. 8 (1978), 153-157. Zbl 0387.62074, MR 0520827
.

Files

Files Size Format View
Kybernetika_24-1988-2_4.pdf 464.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo