Previous |  Up |  Next

Article

Title: Controllability of semilinear delay systems (English)
Author: Balachandran, K.
Author: Balasubramaniam, P.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 5
Year: 1994
Pages: 517-524
.
Category: math
.
MSC: 34K15
MSC: 34K35
MSC: 49K25
MSC: 93B05
idZBL: Zbl 0834.93011
idMR: MR1314347
.
Date available: 2009-09-24T18:50:15Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125141
.
Reference: [1] K. Balachandran, J. P. Dauer: Controllability of nonlinear systems via fixed point theorems.J. Optim. Theory Appl. 53 (1987), 1, 345-352. Zbl 0596.93010, MR 0891093
Reference: [2] E. N. Chukwu: Stability and Time Optimal Control of Hereditary Systems.Academic Press, New York 1992. Zbl 0751.93067, MR 1162308
Reference: [3] J. P. Dauer: Nonlinear perturbations of quasilinear control systems.J. Math. Anal. Appl. 54 (1976), 3, 717-725. MR 0415473
Reference: [4] J. P. Dauer, R. D. Gahl: Controllability of nonlinear delay systems.J. Optim. Theory Appl. 21 (1977), 1, 59-70. Zbl 0325.93007, MR 0433306
Reference: [5] V. N. Do: Controllability of semilinear systems.J. Optim. Theory Appl. 65 (1990), 1, 41-52. Zbl 0674.93006, MR 1048515
Reference: [6] J. Klamka: Controllability of Dynamical Systems.Kluwer Academic Publishers, Dordrecht 1991. Zbl 0732.93008, MR 1134783
Reference: [7] D. L. Lukes: Global controllability of nonlinear system.SIAM J. Control Optim. 10 (1972), 1, 112-126, Erratum 11 (1973), 1, 186. MR 0304004
Reference: [8] M. Vidyasager: A controllability condition for nonlinear systems.IEEE Trans. Automat. Control AC-17 (1972), 5, 569-570. MR 0401251
.

Files

Files Size Format View
Kybernetika_30-1994-5_5.pdf 566.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo