Previous |  Up |  Next

Article

Title: Chi-squared goodness-of-fit test for the family of logistic distributions (English)
Author: Aguirre, Neige
Author: Nikulin, Mikhail
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 3
Year: 1994
Pages: 214-222
.
Category: math
.
MSC: 62F03
MSC: 62G10
MSC: 62G20
idZBL: Zbl 0827.62017
idMR: MR1291924
.
Date available: 2009-09-24T18:46:50Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125173
.
Reference: [1] N. Balakrishnan (ed.): Handbook of the Logistic Distribution.Marcel Dekker, New York 1992. Zbl 0794.62001, MR 1174324
Reference: [2] N. Balakrishnan, A. C. Cohen: Order Statistics and Inference: Estimation Methods.Academic Press, Boston 1990. MR 1084812
Reference: [3] L. N. Bolshev, M. S. Nikulin: One solution of the problem of homogeneity.Serdica 1 (1975), 104-109. MR 0403056
Reference: [4] H. Chernoff, E. L. Lehmann: The use of maximum likelihood estimates in $\chi^2$ tests for goodness of fit.Ann. Math. Statist. 25 (1954), 579-586. MR 0065109
Reference: [5] H. Cramer: Mathematical Methods of Statistics.Princeton University Press, Princeton, N. J. 1946. Zbl 0063.01014, MR 0016588
Reference: [6] R. C. Dahiya, J. Gurland: Pearson chi-square test of fit with random intervals.Biometrika 59 (1972), 1, 147-153. MR 0314191
Reference: [7] F. C. Drost: Asymptotics for generalised chi-square goodness-of-fit tests.CWI Tract 48, Centre for Mathematics and Computer Sciences, Amsterdam 1988. MR 0948670
Reference: [8] R. M. Dudley: Probabilities and metrics-convergence of laws on metric spaces with a view to statistical testing.Lecture Notes 45, Aarhus Universitet, Aarhus 1976. Zbl 0355.60004, MR 0488202
Reference: [9] K. O. Dzhaparidze, M. S. Nikulin: On a modification of the standard statistic of Pearson.Theory Prob. Appl. 19 (1974), 4, 851-852.
Reference: [10] K. O. Dzhaparidze, M. S. Nikulin: On evaluation of statistics of chi-square type tests.In: Problems of the Theory of Probability Distributions 12 (1992), Nauka, St. Petersburg, 59-90.
Reference: [11] R. A. Fisher: On a property connecting the $\chi^2$ measure of discrepancy with the method of maximum likelihood.Atti de Congresso Internazionale di Mathematici, Bologna, 6 (1928), 94-100.
Reference: [12] H. L. Harter, A. H. Moore: Maximum-likelihood estimation, from censored samples, of the parameters of a logistic distribution.J. Amer. Statist. Assoc. 62 (1967), 675-684. Zbl 0149.15002, MR 0212922
Reference: [13] L. Le Cam C. Mahan, A. Singh: An extension of a theorem of H. Chernoff and E. L. Lehmann.In: Recent Advances in Statistics. Academic Press, New York 1983, pp. 303-332. MR 0736539
Reference: [14] D. S. Moore, M. C. Spruill: Unified large-sample theory of general chi-squared statistics for tests of fit.Ann. of Statist. 3 (1975), 599-616. Zbl 0322.62047, MR 0375569
Reference: [15] M. S. Nikulin: Chi-square test for normality.In: Proceedings of International Vilnius Conference on Probability Theory and Mathematical Statistics Vol. 2, 1973, pp. 119-122.
Reference: [16] M. S. Nikulin: Chi-square test for continuous distributions with shift and scale parameters.Theory Probab. Appl. 18 (1973), 3, 559-568. Zbl 0302.62022, MR 0359166
Reference: [17] M. S. Nikulin: Chi-square test for continuous distributions.Theory Probab. Appl. 18 (1973), 3, 638-639. Zbl 0302.62022, MR 0359166
Reference: [18] M. S. Nikulin, V. C. Voinov: A chi-square goodness-of-fit test for exponential distribution of the first order.Lecture Notes in Math. 1312, Springer-Verlag, Berlin 1989, pp. 239-258. MR 1041356
Reference: [19] C. R. Rao: Linear Statistical Inference and its Applications.J. Wiley, New York 1965. Zbl 0137.36203, MR 0221616
Reference: [20] K. C. Rao, D. S. Robson: A chi-squared statistic for goodness-of-fit tests within the exponential family.Commun. Statist. 3 (1974), 1139-1153. MR 0381125
Reference: [21] V. C Voinov, M. S. Nikulin: Unbiased Estimators and their Applications. Part I: Univariate case.Kluwer Academic Publisher, Dordrecht 1993. MR 1472739
Reference: [22] S. Zacks: The Theory of Statistical Inference.Wiley, New York 1979. MR 0420923
.

Files

Files Size Format View
Kybernetika_30-1994-3_2.pdf 800.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo