Previous |  Up |  Next

Article

Title: Dynamic disturbance decoupling for nonlinear discrete-time systems (English)
Author: Fliegner, Thomas
Author: Nijmeijer, Henk
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 1
Year: 1996
Pages: 17-42
.
Category: math
.
MSC: 93B27
MSC: 93B52
MSC: 93C55
MSC: 93C73
idZBL: Zbl 0882.93015
idMR: MR1380196
.
Date available: 2009-09-24T19:00:14Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125238
.
Reference: [1] G. Basile G. Marro: Controlled and conditioned invariant subspaces in linear system theory.J. Optim. Theory Appl. 3 (1969), 306-315. MR 0246661
Reference: [2] S. P. Bhattacharyya: Disturbance rejection in linear systems.Internat. J. Systems Sci. 5 (1974), 633-637. Zbl 0295.93003, MR 0363580
Reference: [3] M. D. Di Benedetto J. W. Grizzle C. H. Moog: Rank invariants of nonlinear systems.SIAM J. Control Optim. 27 (1989), 658-672. MR 0993292
Reference: [4] J. W. Grizzle: Controlled invariance for discrete-time nonlinear systems with an application to the disturbance decoupling problem.IEEE Trans. Automat. Control AC-30 (1985), 868-874. MR 0799480
Reference: [5] J. W. Grizzle: A linear algebraic framework for the analysis of discrete-time nonlinear systems.SIAM J. Control Optim. 31 (1993), 1026-1044. Zbl 0785.93036, MR 1227545
Reference: [6] R. M. Hirschorn: Invertibility of multivariable nonlinear control systems.IEEE Trans. Automat. Control AC-24 (1979), 1-19. Zbl 0427.93020, MR 0566444
Reference: [7] R. M. Hirschorn: $(A,B)$-invariant distributions and disturbance decoupling of nonlinear systems.SIAM J. Control Optim. 19 (1981), 1-19. Zbl 0474.93036, MR 0603076
Reference: [8] H. J. C. Huijberts: Dynamic Feedback in Nonlinear Synthesis Problems.PҺ.D. Thesis, University of Twente, Enschede 1991.
Reference: [9] H. J. C. Huijberts H. Nijmeijer: Strong dynamic input-output decoupling: From linearity to nonlinearity.In: Proceedings of the IFAC Symposium on Nonlinear Control Systems Design, Bordeaux 1992.
Reference: [10] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Dynamic disturbance decoupling for nonlinear systems.SIAM J. Control Optim. 30 (1992), 336-349. MR 1149072
Reference: [11] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Minimality of dynamic input-output decoupling for nonlinear systems.Systems Control Lett. 18 (1992), 435-443. MR 1169289
Reference: [12] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Dynamic disturbance decoupling for nonlinear systems: The nonsquare and noninvertible case.In: Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J.P. Gauthier and I. Kupka, eds.), Birkhäuser, Boston 1991, pp. 243-252. MR 1131998
Reference: [13] A. Ilchmann: Contributions to Time-Varying Linear Control Systems.Verlag an der Lottbek, Ammersbek 1989. Zbl 0693.93048
Reference: [14] A. Ilchmann: Time-varying linear control systems: A geometric approach.IMA J. Math. Control Inform. 6 (1989), 411-440. Zbl 0696.93017, MR 1036156
Reference: [15] A. Isidori A. J. Krener C. Gori-Giorgi S. Monaco: Nonlinear decoupling via feedback: a differential geometric approach.IEEE Trans. Automat. Control AC-26 (1981), 331-345. MR 0613540
Reference: [16] T. Kaczorek: Linear Control Systems II.Research Studies Press Ltd., Taunton 1993.
Reference: [17] Ü. Kotta: Dynamic disturbance decoupling for discrete-time nonlinear systems: the nonsquare and non-invertible case.In: Proc. Estonian Acad. Sci. Phys. Math. 41 (1991), 14-22. MR 1167108
Reference: [18] Ü. Kotta H. Nijmeijer: Dynamic Disturbance Decoupling for Discrete-Time Nonlinear Systems.Memorandum No. 913, University of Twente, Enschede 1990.
Reference: [19] W. C. A. Maas H. Nijmeijer: Dynamic path controllability in economic models: from linearity to nonlinearity.J. Econom. Dynamics Control 18 (1994), 781-805. MR 1277285
Reference: [20] S. Monaco D. Normand-Cyrot: Invariant distributions for discrete time nonlinear systems.Systems Control Lett. 5 (1984), 191-196. MR 0777852
Reference: [21] H. Nijmeijer: Local (dynamic) input-output decoupling of discrete time nonlinear systems.IMA J. Math. Control Inform. 4 (1987), 237-250. Zbl 0631.93033, MR 0910195
Reference: [22] H. Nijmeijer A. van der Schaft: Nonlinear Dynamical Control Systems.Springer Verlag, New Yoгk 1990. MR 1047663
Reference: [23] W. Respondek: Disturbance decoupling via dynamic feedback.In: Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhäuser, Boston 1991, pp. 347-357. Zbl 0801.93023, MR 1132008
Reference: [24] L. M. Silverman: Inversion of multivariable linear systems.IEEE Trans. Automat. Contr. AC-14 (1969), 270-276. MR 0267927
Reference: [25] S. N. Singh: Generalised decoupled-control synthesis for nonlinear systems.IEE Proceedings 128(1981), 157-161. MR 0622684
Reference: [26] W. M. Wonham A. S. Morse: Decoupling and pole assignment in linear multivariable systems: A geometric approach.SIAM J. Control Optim. 8 (1970), 1-18. MR 0270771
Reference: [27] W. M. Wonham: Linear Multivariable Control.Springer Verlag, New York 1985. Zbl 0609.93001, MR 0770574
.

Files

Files Size Format View
Kybernetika_32-1996-1_2.pdf 1.561Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo