Previous |  Up |  Next

Article

Title: Properties of reachability and almost reachability subspaces of implicit systems: The extension problem (English)
Author: Eliopoulou, Helen
Author: Karcanias, Nicos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 6
Year: 1995
Pages: 530-540
.
Category: math
.
MSC: 93B03
MSC: 93B05
MSC: 93C05
idZBL: Zbl 0864.93022
idMR: MR1374142
.
Date available: 2009-09-24T18:58:28Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125282
.
Reference: [1] D. J. Aplevich: Minimal representation of implicit linear systems.Automatica 21 (1985), 259-269. MR 0793061
Reference: [2] D. Bernard: On singular implicit linear dynamical systems.SIAM J. Control Optim. 29 (1989), 612-633. MR 0667644
Reference: [3] H. Eliopoulou: A Matrix Pencil Approach for the Study of Geometry and Feedback Invariants of Singular Systems.PhD Thesis, Control Eng. Centre, City University, London 1994.
Reference: [4] H. Eliopoulou, N. Karcanias: Geometric properties of the singular Segre characteristic at infinity of a pencil.In: Recent Advances in Mathematical Theory of Systems, Control Networks and Signal Processing II - Proceedings of the International Symposium MTNS 91, Tokyo, pp. 109-114. MR 1198007
Reference: [5] H. Eliopoulou, N. Karcanias: Toeplitz matrix characterisation and computation of the fundamental subspaces of singular systems.In: Proceedings of Symposium of Implicit and Nonlinear Systems SINS'92, The Aut. & Robotics Res. Inst., University of Texas at Arlington 1992, pp. 216-221.
Reference: [6] H. Eliopoulou, N. Karcanias: On the study of the chains and spaces related to the Kronecker invariants via their generators. Part II: Elementary divisors.(submitted for publication).
Reference: [7] F. R. Gantmacher: Theory of Matrices.Chelsea, New York 1959. Zbl 0085.01001
Reference: [8] S. Jaffe, N. Karcanias: Matrix pencil characterisation of almost (A, B) invariant subspaces: A classification of geometric concepts.Internat. J. Control 33 (1981), 51-93. MR 0607261
Reference: [9] G. Kalogeropoulos: Matrix Pencils and Linear System Theory.PhD Thesis, Control Eng. Centre, City University, London 1985.
Reference: [10] N. Karcanias: Proper invariant realisation of singular system problems.IEEE Trans. Automat. Control AC-35 (1990), 2, 230-233. MR 1038428
Reference: [11] N. Karcanias: Minimal bases of matrix pencils: Algebraic, Toeplitz structure and geometric properties.Linear Algebra Appl. 205-206 (1994), 205-206. Zbl 0804.15008, MR 1276843
Reference: [12] N. Karcanias: The selection of input and output schemes for a system and the model projection problems.Kybernetika 30 (1994), 585-596. Zbl 0827.93006, MR 1323661
Reference: [13] N. Karcanias, G. Kalogeropoulos: Geometric theory and feedback invariants of generalised linear systems: A matrix pencil approach.Circuits Systems Signal Process. 8 (1989), 375-397. MR 1015178
Reference: [14] N. Karcanias, H. Eliopoulou: On the study of the chains and spaces related to the Kronecker invariants via their generators. Part I: Minimal bases for matrix pencils.(submitted for publication).
Reference: [15] N. Karcanias, G. Hayton: Generalised autonomouc dynamical systems, algebraic duality and geometric theory.In: Proc. IFAC VIII Trennial World Congress, Kyoto 1981. MR 0735816
Reference: [16] N. Karcanias, D. Vafiadis: On the cover problems of geometric theory.Kybernetika 29 (1993), 547-562. Zbl 0821.93026, MR 1264886
Reference: [17] F. Lewis: A tutorial on the geometric analysis of linear time invariant implicit systems.Automatica 28 (1992), 119-138. Zbl 0745.93033, MR 1144115
Reference: [18] J. J. Loiseau: Some geometric considerations about the Kronecker normal form.Internat. J. Control 42 (1985), 6, 1411-1431. Zbl 0609.93014, MR 0818345
Reference: [19] K. Ozcaldiran: Control of Descriptor Systems.PhD Thesis, School of Elec. Eng., Georgia Institute of Techn., Atlanta 1985.
Reference: [20] K. Ozcaldiran: A geometric characterisation of reachable and controllable subspaces of descriptor systems.Circuits Systems Signal Process. 5 (1986), 1, 37-48. MR 0893726
Reference: [21] K. Ozcaldiran, F. L. Lewis: Generalised reachability subspaces for singular systems.SIAM J. Control Optim. 26 (1989), 495-510. MR 0993283
Reference: [22] H. L. Trentelman: Almost Invariant Subspaces and High Gain Feedback.PhD Thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology 1985. MR 0879423
Reference: [23] J. C. Willems: Almost invariant subspaces: An approach to high gain feedback design.IEEE Trans. Automat. Control AC-26 (1981), 235-252; AC-27 (1982), 1071-1085. Zbl 0463.93020
Reference: [24] W. M. Wonham: Linear Multivariable Control: A Geometric Approach.Second edition. Springer-Verlag, New York 1979. Zbl 0424.93001, MR 0569358
.

Files

Files Size Format View
Kybernetika_31-1995-6_2.pdf 538.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo