Previous |  Up |  Next

Article

Title: Optimum damping design for an abstract wave equation (English)
Author: Fahroo, Fariba
Author: Ito, Kazufumi
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 32
Issue: 6
Year: 1996
Pages: 557-574
.
Category: math
.
MSC: 93C20
MSC: 93D15
MSC: 93D21
idZBL: Zbl 1043.93544
idMR: MR1438105
.
Date available: 2009-09-24T19:05:36Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125368
.
Reference: [1] H. T. Banks, F. Fahroo: Legendre-Tau approximations for LQR feedback control of acoustic pressure fields.J. Math. Systems Estimation Control 5 (1995), 2, 271-274. MR 1646277
Reference: [2] H. T. Banks, K. Ito: A unified framework for approximations in inverse problems for distributed parameter systems.Control Theory Adv. Tech. 4 (1988), 73-90. MR 0941397
Reference: [3] G. Chen: A note on the boundary stabilization of the wave equation.SIAM J. Control Optim. 19 (1981), 106-113. Zbl 0461.93036, MR 0603083
Reference: [4] G. Chen S. A. Fulling F. J. Narcowich, S. Sun: Exponential decay of energy of evolution equations with locally distributed damping.SIAM J. Appl. Math. 51 (1991), 266-301. MR 1089141
Reference: [5] G. Chen S. A. Fulling F. J. Narcowich, C. Qi: An average asymptotic decay rate for the wave equation with variable coefficient viscous damping.SIAM J. Appl. Math. 49 (1990), 1341-1347. MR 1061353
Reference: [6] G. Chen, J. Zhou: Vibration and Damping in Distributed Parameter Systems. Vol 1.CRC Press, Boca Raton, Fl 1993.
Reference: [7] R. Datko: Extending a theorem of A. M. Liapunov to Hilbert space.J. Math. Anal. Appl. 32 (1970), 610-616. Zbl 0211.16802, MR 0268717
Reference: [8] I. Ekeland, R. Temam: Convex Analysis and Variational Problems.North Holland, Amsterdam 1976. Zbl 0322.90046, MR 0463994
Reference: [9] F. Fahroo, K. Ito: Variational formulation of optimal damping designs.In preparation. Zbl 0931.49019
Reference: [10] K. Ito: The application of Legendre-Tau approximations to parameter identification for delay and partial differential equations.In: Proc. 22nd IEEE Conf. on Decision and Control, December 1983, pp. 33-37.
Reference: [11] J. E. Lagnese: Decay of solutions of the wave equation in a bounded region with boundary dissipation.J. Differential Equations 50 (1983), 163-182. MR 0719445
Reference: [12] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, New York 1983. Zbl 0516.47023, MR 0710486
Reference: [13] R. Triggiani: On the stabilizability problem in Banach space.J. Math. Anal. Appl. 52 (1975), 383-403. Zbl 0326.93023, MR 0445388
.

Files

Files Size Format View
Kybernetika_32-1996-6_4.pdf 908.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo