Title:
|
Computational methods for estimation in the modeling of nonlinear elastomers (English) |
Author:
|
Banks, H. T. |
Author:
|
Lybeck, N. J. |
Author:
|
Gaitens, M. J. |
Author:
|
Muñoz, B. C. |
Author:
|
Yanyo, L. C. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
32 |
Issue:
|
6 |
Year:
|
1996 |
Pages:
|
526-542 |
. |
Category:
|
math |
. |
MSC:
|
73C50 |
MSC:
|
73D35 |
MSC:
|
74S99 |
MSC:
|
93B40 |
idZBL:
|
Zbl 1043.74530 |
idMR:
|
MR1438103 |
. |
Date available:
|
2009-09-24T19:05:21Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125370 |
. |
Reference:
|
[1] H. T. Banks D. S. Gilliam, V. I. Shubov: Well-Posedness for a One Dimensional Nonlinear Beam.Technical Report No. CRSC-TR94-18, NCSU, 1994; Computation and Control IV, K. Bowers and J. Lund, eds., Birkhäuser, Boston 1995, pp. 1-21. MR 1349580 |
Reference:
|
[2] H. T. Banks D. S. Gilliam, V. I. Shubov: Global Solvability for Damped Abstract Nonlinear Hyperbolic Systems.Technical Report No. CRSC-TR95-25, NCSU, 1995; Differential and Integral Equations, to appear. MR 1424814 |
Reference:
|
[3] H. T. Banks K. Ito, Y. Wang: Well Posedness for Damped Second Order Systems with Unbounded Input Operators.Technical Report No. CRSC-TR93-10, NCSU, 1993; Differential and Integral Equations 8 (1995), 587-606. MR 1306577 |
Reference:
|
[4] H. T. Banks, N. J. Lybeck: A Nonlinear Lax-Milgram Lemma Arising in the Modeling of Elastomers.Technical Report No. CRSC-TR95-37, NCSU, 1995; Nonlinear Partial Differential Equations, Collège de France Seminar, Vol. 13, 1996, to appear. MR 1773073 |
Reference:
|
[5] H. T. Banks N. Medhin, Y. Zhang: A Mathematical Framework for Curved Active Constrained Layer Structures: Well-posedness and Approximation.Technical Report No. CRSC-TR95-32, NCSU, 1995; Numer. Funct. Anal. Optim., to appear. MR 1391870 |
Reference:
|
[6] H. T. Banks, J. G. Wade: Weak Tau approximations for distributed parameter systems in inverse problems.Numer. Funct. Anal. Optim. 12 (1991), 1-31. Zbl 0744.35061, MR 1125044 |
Reference:
|
[7] F. E. Browder: Nonlinear monotone operators and convex sets in Banach spaces.Bull. Amer. Math. Soc. 71 (1965), 780-785. Zbl 0138.39902, MR 0180882 |
Reference:
|
[8] D. J. Charlton J. Yang, K. K. Teh: A review of methods to characterize rubber elastic behavior for use in finite element analysis.Rubber Chemistry \& Technology 67 (1994), 481-503. |
Reference:
|
[9] R. M. Christensen: Theory of Viscoelasticity.Academic Press, New York 1982. |
Reference:
|
[10] R. W. Clough, J. Penzien: Dynamics of Structures.McGraw-Hill, New York 1975. Zbl 0357.73068 |
Reference:
|
[11] R. Dautray, J. L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2: Functional and Variational Methods.Springer-Verlag, Berlin--Heidelberg 1988. MR 0969367 |
Reference:
|
[12] J. D. Ferry: Viscoelastic Properties of Polymers.John Wiley \& Sons, New York 1980. |
Reference:
|
[13] G. J. Minty: Monotone (nonlinear) operators in Hilbert space.Duke Math. J. 29 (1962), 341-346. Zbl 0111.31202, MR 0169064 |
Reference:
|
[14] A. C. Pipkin: Lectures on Viscoelasticity Theory.Springer-Verlag, Berlin--Heidelberg 1972. Zbl 0237.73022 |
Reference:
|
[15] M. Renardy W. J. Hrusa, J. A. Nohel: Mathematical Problems in Viscoelasticity.Pittman Monograph, Longman/J. Wiley \& Sons, 1987. MR 0919738 |
Reference:
|
[16] R. S. Rivlin: Large elastic deformations of isotropic materials I, II, III.Philos. Trans. Roy. Soc. London Ser. A 240 (1948), 459-490, 491-508, 509-525. |
Reference:
|
[17] I. H. Shames, F. A. Cozzarelli: Elastic and Inelastic Stress Analysis.Prentice Hall, Englewood Cliffs, N. J. 1992. Zbl 0765.73001 |
Reference:
|
[18] S. Timoshenko D. H. Young, W. Weaver, Jr.: Vibration Problems in Engineering.J. Wiley \& Sons, New York 1974. |
Reference:
|
[19] L. R. G. Treloar: The Physics of Rubber Elasticity.Clarendon Press, Oxford 1975. |
Reference:
|
[20] I. M. Ward: Mechanical Properties of Solid Polymers.John Wiley \& Sons, New York 1983. |
Reference:
|
[21] J. Wloka: Partial Differential Equations.Cambridge University Press, Cambridge 1987. Zbl 0623.35006, MR 0895589 |
. |