Previous |  Up |  Next

Article

Title: Approximation approach for nonlinear filtering problem with time dependent noises. II. Stable nonlinear filters (English)
Author: Hoang, S.
Author: Baraille, R.
Author: Talagrand, O.
Author: Nguyen, T. L.
Author: De Mey, P.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 33
Issue: 5
Year: 1997
Pages: 557-576
.
Category: math
.
MSC: 93C99
MSC: 93E11
MSC: 93E25
idZBL: Zbl 0910.93078
idMR: MR1603969
.
Date available: 2009-09-24T19:11:31Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125394
.
Related article: http://dml.cz/handle/10338.dmlcz/124888
.
Reference: [1] R. Albert: Regression and the Moore-Penrose Pseudoinverse.Academic Press, New York 1972. Zbl 0253.62030, MR 0331659
Reference: [2] A. Bryson, Ho-Yu-Chi: Applied Optimal Control.Ginn and Co., Waltham, Mass. 1969.
Reference: [3] P. D. Crutko: The Lyapunov Functions in Inverse Problems for Dynamical Controlled Systems. Scalar Models.Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1983), No. 4.
Reference: [4] P. D. Crutko: The Lyapunov Functions in Inverse Problems for Dynamical Controlled Systems. Multidimensional models.Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1984), No. 4.
Reference: [5] P. D. Crutko: Invesion of Direct Lyapunov Method in Control Problems for Dynamical Systems.Izv. Akad. Nauk SSSR Tekhn. Kibernet. (1989), No. 3.
Reference: [6] D. P. Dee: Simplification of the Kalman filter for meteorological data assimilation.Quart. J. Roy. Meteorol. Soc. 117 (1991), 365-384.
Reference: [7] R. J. Fitzgerald: Divergence of the Kalman filter.IEEE Trans. Automat. Control AC-16 (1971), 736-747.
Reference: [8] M. Ghil, P. Malanotte-Rizzoli: Data assimilation in meteorology and oceanography.Adv. in Geophysics 33 (1991), 141-266.
Reference: [9] R. E. Griffin, A. P. Sage: Sensitivity analysis of discrete filtering and smoothing algorithms.In: AIAA Guidance, Control and Flight Dynamics Conf., Pasadena, California 1988, Paper No. 68-824.
Reference: [10] H. Heffes: The effect of erroneous models on the Kalman filter response.IEEE Trans. Automat. Control AC-11 (1966), 541-543.
Reference: [11] H. S. Hoang P. De Mey, O. Talagrand: A simple algorithm of stochastic approximation type for system parameter and state estimation.In: 33rd IEEE CDC, Florida 1994, pp. 447-452.
Reference: [12] H. S. Hoang R. Baraille O. Talagrand P. De Mey, X. Carton: On the design of a stable adaptive filter.In: Proc. 35th IEEE CDC, Kobe 1996, Vol. 3, pp. 3543-3544.
Reference: [13] H. S. Hoang P. De Mey O. Talagrand, R. Baraille: A new reduced-order adaptive filter for high dimensional systems.In: Proc. of IFAC Internat. Symp. Adaptive Systems in Control and Signal Processing (Cs. Banyasz, ed.), Budapest 1995, pp. 153-158. Also: Automatica 33 (1997), 8, 1475-1498. MR 1470055
Reference: [14] H. S. Hoang, T. L. Nguyen: Time-stable non-linear filters: Stochastic Lyapunov function approach.In: Recent Advances in Mathematical Theory of Systems and Control, Networks and Signal Processing (H. Kimura and S. Kodama, eds.), Mita Press, Tokyo 1992, pp. 653-658. MR 1197987
Reference: [15] S. Hoang L. Nguyen R. Baraille, O. Talagrand: Approximation approach for nonlinear filtering problem with time dependent noises. Part I: Conditionally optimal filter in the minimum mean square sense.Kybernetika 33 (1997), 4, 409-425. MR 1471386
Reference: [16] H. S. Hoang, O. Talagrand: On regularization approach to parameter estimation and application to design of stable filters.In: IFAC 12th World Congress, V-4, Sydney 1993, pp. 213-218.
Reference: [17] A. H. Jazwinski: Stochastic Processes and Filtering Theory.Academic Press, New York 1970. Zbl 0203.50101
Reference: [18] R. E. Kalman, R. S. Bucy: New results in linear filtering and prediction theory.In: Trans. ASME, J. Basic Eng., 1961, 83D, pp. 95-108. MR 0234760
Reference: [19] R. S. Liptser, A. N. Shiryaev: Statistics of Random Processes.Nauka, Moscow 1974. MR 0431365
Reference: [20] L. Ljung, T. Sodestrom: Theory and Practice of Recursive Identification.Academic Press, New York 1983. MR 0719192
Reference: [21] R. K. Mehra: On the identification of variances and adaptive Kalman filtering.IEEE Trans. Automat. Control AC-15 (1970), 175-184. MR 0274179
Reference: [22] V. I. Meleshko, S. S. Sekt: Regularized estimates in problems with singular variance matrices.Automat. Remote Control 3 (1988), 293-297. Zbl 0657.93061, MR 0943891
Reference: [23] T. L. Nguyen, H. S. Hoang: On solution of ill-posed optimal linear filtering problem with correlated noises.Automat. Remote Control 4 (1983), 1, 453-466. MR 0156733
Reference: [24] V. S. Pugachev: Recursive estimation of variables and characteristics in the stochastic systems described by the difference equations.Dokl. Acad. Nauk USSR 243 (1976), 5. MR 0514777
Reference: [25] S. Safonov, M. Athans: On stability theory.In: Proc. IEEE CDC, San Diego 1979. Zbl 0428.93050, MR 0551861
Reference: [26] G. Sewell: The numerical Solution of Ordinary and Partial Differential Equations.Academic Press, New York 1988. Zbl 0657.65003, MR 0968668
Reference: [27] L. M. Silverman: Discrete Riccati equations: Algorithms, asymptotic properties and system theory interpretation.In: Filtering and Stochastic Control in Dynamical Systems (C. T. Leondes, ed.), Mir, Moscow 1980.
Reference: [28] H. W. Sorenson: On the error behavior in linear minimum variance estimation problems.IEEE Trans. Automat. Control AC-12 (1967), 557-562.
Reference: [29] O. Talagrand, P. Courtier: Variational assimilation of meteorological observations with the Adjoint vorticity equations. I. Theory.Quart. J. Roy. Meteorol. Soc. 113 (1987), 1311-1328.
Reference: [30] J. Verron: Nudging satellite altimetry data into quasi-geostrophic models.J. Geophys. Research 97 (1992), 7479-7491.
Reference: [31] V. I. Zubov: On theory of analytic design of regulators.Automat. Remote Control (1963), No. 8.
.

Files

Files Size Format View
Kybernetika_33-1997-5_7.pdf 1.264Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo