Previous |  Up |  Next

Article

Title: A quantile goodness-of-fit test applicable to distributions with non-differentiable densities (English)
Author: Rublík, František
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 33
Issue: 5
Year: 1997
Pages: 505-524
.
Category: math
.
MSC: 62E20
MSC: 62G10
idZBL: Zbl 0930.62015
idMR: MR1603957
.
Date available: 2009-09-24T19:11:07Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125397
.
Reference: [1] J. Anděl: Mathematical Statistics.SNTL, Prague 1978. (In Czech.)
Reference: [2] E. Bofinger: Goodness-of-fit test using sample quantiles.J. Roy. Statist. Soc. Ser. B 35 (1973), 277-284. Zbl 0263.62029, MR 0336896
Reference: [3] L. N. Bolshev: Cluster analysis.Bull. Inst. Internat. Statist. 43 (1969), 411-425. Zbl 0227.62037, MR 0397999
Reference: [4] H. Cramér: Mathematical Methods of Statistics.Princeton University Press, Princeton 1946. MR 0016588
Reference: [5] R. B. D'Agostino: An omnibus test for normality for moderate and large size samples.Biometrika 58 (1971), 341-348. MR 0323010
Reference: [6] R. C. Dahiya, J. Gurland: Pearson chi-squared test of fit with random intervals.Biometrika 59 (1972), 147-153. Zbl 0232.62017, MR 0314191
Reference: [7] J. K. Ghosh: A new proof of the Bahadur representation of quantiles and an application.Ann. Math. Statist. 42 (1971), 1957-1961. Zbl 0235.62006, MR 0297071
Reference: [8] P. J. Huber: Robust Statistics.Wiley, New York 1981. Zbl 0536.62025, MR 0606374
Reference: [9] N. L. Johnson S. Kotz, N. Balakrishnan: Continuous Univariate Distributions -- 1.Wiley, New York 1994.
Reference: [10] I. A. Koutrouvelis, J. Kellermeier: A goodness-of-fit test based on the empirical characteristic function when the parameters must be estimated.J. Roy. Statist. Soc. Ser. B 43 (1981), 173-176. MR 0626762
Reference: [11] J. A. J. Metz P. Haccou, E. Meelis: On the Shapiro-Wilk test and Darling's test for exponentiality.Biometrika 50 (1994), 527-530.
Reference: [12] D. S. Moore: A chi-square statistic with random cell boundaries.Ann. Math. Statist. 42 (1971), 147-156. Zbl 0218.62015, MR 0275601
Reference: [13] M. S. Nikulin: Chi-square test for continuous distributions with location and scale parameters.Theor. Veroyatnost. i Primenen. 18 (1973), 583-592. (In Russian.) MR 0359166
Reference: [14] M. S. Nikulin: On a quantile test.Theor. Veroyat. i Primenen. 19 (1974), 431-434. (In Russian.) Zbl 0313.62018, MR 0398000
Reference: [15] D. Pollard: Asymptotics via empirical processes.Statist. Sci. 4 (1989), 341-366. Zbl 0955.60517, MR 1041762
Reference: [16] C. R. Rao: Linear Statistical Inference and Its Applications.Wiley, New York 1973. Zbl 0256.62002, MR 0346957
Reference: [17] S. S. Shapiro, M. B. Wilk: An analysis variance test of normality.Biometrika 52 (1965), 591-611. MR 0205384
Reference: [18] S. S. Shapiro, M. B. Wilk: An analysis of variance test for the exponential distribution (complete samples).Technometrics 14 (1972), 355-370.
Reference: [19] G. S. Watson: The $\chi^2$ goodness-of-fit test for normal distributions.Biometrika 44 (1957), 336-348. MR 0090951
Reference: [20] G. S. Watson: On chi-square goodness-of-fit tests for continuous distributions.J. Roy. Statist. Soc. Ser. B 20 (1958), 44-72. Zbl 0086.12701, MR 0100312
.

Files

Files Size Format View
Kybernetika_33-1997-5_4.pdf 1.467Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo