Previous |  Up |  Next

Article

Title: Conjugate direction algorithms for extended conic functions (English)
Author: Lukšan, Ladislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 22
Issue: 1
Year: 1986
Pages: 31-46
.
Category: math
.
MSC: 49A55
MSC: 49D07
MSC: 65K05
MSC: 90C30
idZBL: Zbl 0597.65059
idMR: MR839343
.
Date available: 2009-09-24T17:51:04Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125545
.
Reference: [1] J. Abaffy, F. Sloboda: Imperfect conjugate gradient algorithms for extended quadratic functions.Numer. Math. 42 (1983), 97-105. Zbl 0524.65045, MR 0716476
Reference: [2] P. Bjorstad, J. Nocedal: Analysis of a new algorithm for one-dimensional minimization.Computing 22 (1979), 93-100. Zbl 0401.65041, MR 0620386
Reference: [3] C. G. Broyden: Quasi-Newton methods and their application to function minimization.Math. Comp. 21 (1967), 368-381. MR 0224273
Reference: [4] W. C. Davidon: Variable Metric Method for Minimization.Report ANL-5990 Rev., Argonne National Laboratories, Argonne, IL, 1959.
Reference: [5] W. C. Davidon: Conic approximations and collinear scalings for optimizers.SIAM J. Numer. Anal. 17 (1980), 268-281. Zbl 0424.65026, MR 0567273
Reference: [6] E. J. Davison, P. Wong: A robust algorithm that minimizes 1-functions.Automatica 11 (1975), 287-308. MR 0406520
Reference: [7] L. C. W. Dixon: Conjugate directions without linear searches.Inst. Math. Appl. 11 (1973), 317-328. Zbl 0259.65060, MR 0336995
Reference: [8] L. C. W. Dixon: Conjugate gradient algorithm: quadratic termination properties without line searches.Inst. Math. Appl. 15 (1975), 9-18. MR 0368429
Reference: [9] J. Flachs: On the convergence, invariance, and related aspects of a modification of Huang's algorithm.Optim. Theory Appl. 37 (1982), 315-341. Zbl 0462.65042, MR 0663527
Reference: [10] R. Fletcher, M. J. D. Powell. : A rapidly convergent descent method for minimization.Comput. J. 6 (1963), 163-168. Zbl 0132.11603, MR 0152116
Reference: [11] R. Fletcher, C. M. Reeves: Function minimization by conjugate gradients.Comput. J. 7 (1964), 149-154. Zbl 0132.11701, MR 0187375
Reference: [12] D. Goldfarb: Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints.SIAM J. Appl. Math. 17 (1969), 739-763. Zbl 0185.42602, MR 0290799
Reference: [13] M. R. Hestenes, E. Stiefel: The method of conjugate gradients for solving linear systems.J. Res. Nat. Bur. Standards 49 (1952), 409-436. MR 0060307
Reference: [14] H. Y. Huang: Method of Dual Matrices for Function Minimization.Aero-Astronautic Report No. 88, Rice University, Houston, TX, 1972. Zbl 0254.65044
Reference: [15] M. L. Lenard: Accelerated Conjugate Direction Methods for Unconstrained Optimization.Technical Report No. MRC-1591, University of Wisconsin, Madison, WI, 1976.
Reference: [16] L. Lukšan: Conjugate gradient algorithms for conic functions.Aplikace matemat. (to appear). MR 0870480
Reference: [17] L. Lukšan: Variable metric methods for a class of extended conic functions.Kybernetika 21 (1985), 96-107. MR 0797323
Reference: [18] L. Nazareth: A conjugate direction algorithm without line searches.J. Optim. Theory Appl. 23 (1977), 373-387. Zbl 0348.65061, MR 0525743
Reference: [19] J. E. Shirey: Minimization of extended quadratic functions.Numer. Math. 39 (1982), 157-161. Zbl 0491.65038, MR 0669312
Reference: [20] F. Sloboda: An imperfect conjugate gradient algorithm.Aplikace matematiky 27 (1982), 426-434. Zbl 0503.65017, MR 0678112
Reference: [21] F. Sloboda: A generalized conjugate gradient algorithm for minimization.Numer. Math. 35 (1980), 223-230. Zbl 0424.65033, MR 0585248
Reference: [22] D. C. Sorensen: The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization.SIAM J. Numer. Anal. 17 (1980), 84-114. Zbl 0428.65040, MR 0559465
Reference: [23] E. Spedicato: A variable-metric method for function minimization derived from invariancy to nonlinear scaling.J. Optim. Theory Appl. 20 (1976), 315-329. Zbl 0316.90066, MR 0426854
Reference: [24] G. Zoutendijk: Methods of Feasible Directions.Elsevier, Amsterdam 1960. Zbl 0097.35408
.

Files

Files Size Format View
Kybernetika_22-1986-1_3.pdf 969.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo