Previous |  Up |  Next

Article

Title: A unified approach to multivariable discrete-time filtering based on the Wiener theory (English)
Author: Barrett, John F.
Author: Moir, Thomas J.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 23
Issue: 3
Year: 1987
Pages: 177-197
.
Category: math
.
MSC: 62M15
MSC: 62M20
MSC: 93C35
MSC: 93C55
MSC: 93E10
MSC: 93E11
MSC: 93E14
idZBL: Zbl 0627.93067
idMR: MR900329
.
Date available: 2009-09-24T17:59:23Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125607
.
Reference: [1] U. Shaked: A transfer function approach to linear discrete stationary filtering and the steadystate discrete optimal control problem.Internat. J. Control 29 (1979), 2, 279-291. MR 0527853
Reference: [2] P. Hagander, B. Wittenmark: A self-tuning filter for fixed-lag smoothing.IEEE Trans. Inform. Theory 23 (1977), 3, 377-384. Zbl 0382.93060
Reference: [3] T. J. Moir: Design of Discrete time Controllers and Estimators.CNAA Ph. D. Thesis, Sheffield Polytechnic Dept. of Electr. Engrg., Feb. 1983.
Reference: [4] T. J. Moir, M. J. Grimble: Optimal self-tuning filtering, smoothing and predication for discrete multivariable processes.IEEE Trans. Automat. Control 19 (1984), 2, 128-137.
Reference: [5] J. F. Barrett: Construction of Wiener Filters using the return difference matrix.Internat. J. Control 26 (1977), 5, 797-803. Zbl 0389.93045, MR 0462733
Reference: [6] V. Kučera: Transfer function solution of the Kalman-Bucy filter problem.Kybernetika 14 (1978), 2, 110-122. MR 0490326
Reference: 17] Z. L. Deng: Multivariable self-tuning filter and smoother.6th IFAC symp. identif. & syst. param. estim., Arlington 1982.
Reference: [8] Z. L. Deng: White-noise filter and smoother with application to seismic data deconvolution.7th IFAC symp. identif. & syst. param. estim., York 1985.
Reference: [9] Yu. A. Rozanov: Stationary Random Processes.Gos. Izdat. Fiz.-Mat. Lit. Moscow, 1963. English transl. published by Holden-Day, San Francisco 1967. MR 0214134
Reference: [10] H. Wold: A Study in the Analysis of Stationary Time Series.Almqvist \& Wiksell, Uppsala 1953. MR 0061344
Reference: [11] A. N. Kolmogorov: Stationary sequences in Hilbert space.Bull. Moscow State Univ. 2 (1941), 6, 1-40, English transl. in T. Kailath (ed.) Linear Least Squares Estimation. Dowden, Hutchinson \& Ross, Stroudsburg, Pennsylvania 1977.
Reference: [12] P. Whittle: Prediction and Regulation by Least Squares.English Universities Press, London 1963. MR 0157416
Reference: [13] W. R. E. Wouters, M. Gevers: An innovations approach to the discrete-time linear least squares estimation problem.Journal ,,A'', 19 (1978), 1, 8-20. Zbl 0381.93040
Reference: [14] Chi-Tsong Chen: On the digital Wiener filter.Proc. IEEE 64 (1976), 1736-1737.
Reference: [15] P. E. W. Grensted: A lecture course on linear sampled data systems (unpublished).Cambridge University, Department of Engineering, 1969.
Reference: [16] D. H. Mee: Factorization-result for optimal discrete-time systems.Electron. Lett. 6 (1970), 233-234.
Reference: [17] C. C. Arcasoy: Return-difference matrix properties for optimal stationary Kalman filtering.Proc. IEE 118 (1971), 2, 1831-1834. MR 0335083
Reference: [18] B. D. O. Anderson, J. B. Moore: Optimal Filtering.Prentice-Hall, New Jersey 1979. Zbl 0688.93058
Reference: [19] J. B. Moore: Discrete-time fixed-lag smoothing algorithms.Automatica 9 (1973), 163- 173. Zbl 0249.93053
Reference: [20] V. Kučera: New results in state estimation.Automatica 17 (1981), 5, 745-748. MR 0632848
Reference: [21] J. F. Barrett: Solution of the stationary filtering problem in the frequency domain.IEE Colloquium: Frequency domain aspects of filtering theory, London 1982.
Reference: [22] J. F. Barrett: Problems Arising in the Analysis of Randomly Disturbed Automatic Control Systems.Ph. D. Thesis, Cambridge University, Dec. 1958.
.

Files

Files Size Format View
Kybernetika_23-1987-3_1.pdf 1.157Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo