Previous |  Up |  Next

Article

Title: Continuity and quantization of channels with infinite alphabets (English)
Author: Šujan, Štefan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 17
Issue: 6
Year: 1981
Pages: 465-478
.
Category: math
.
MSC: 94A17
MSC: 94A24
MSC: 94A34
MSC: 94A40
idZBL: Zbl 0479.94012
idMR: MR674062
.
Date available: 2009-09-24T17:24:16Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125639
.
Reference: [1] K. Winkelbauer: On the coding theorem for decomposable channels I, II.Kybernetika 7 (1971), 109-123, 230-255. MR 0300751
Reference: [2] J. C. Kieffer: A general formula for the capacity of a stationary nonanticipatory channel.Inform. and Control 26 (1974), 381-391. MR 0384324
Reference: [3] R. M. Gray D. S. Ornstein: Block coding for discrete stationary d-continuous noisy channels.IEEE Trans. Inform. Theory 25 (1979), 292-306. MR 0528007
Reference: [4] J. Wolfowitz: Coding Theorems of Information Theory.2nd ed. Springer-Verlag, Berlin - Gottingen -New York 1964. Zbl 0132.39704, MR 0176851
Reference: [5] J. C. Kieffer: Block coding for a stationary channel satisfying a weak continuity condition.(to appear).
Reference: [6] R. M. Gray J. C. Kieffer: Mutual information rate, distortion and quantization in metric spaces.IEEE Trans. Inform. Theory 26 (1980), 412-422. MR 0581788
Reference: [7] Š. Šujan: Channels with additive asymptotically mean stationary noise.Kybernetika 17 (1981), 1, 1-15. MR 0629345
Reference: [8] P. Billingsley: Convergence of Probability Measures.J. Wiley, New York-London-Sydney-Toronto 1968. Zbl 0172.21201, MR 0233396
Reference: [9] J. C. Kieffer: On the transmission of Bernoulli sources over stationary channels.Ann. Prob. 8 (1980), 942-961. Zbl 0452.94012, MR 0586778
Reference: [10] Š. Šujan: A generalized coding problem for discrete information sources.Supplement. Kybernetika 13 (1977), 95 pp. MR 0465531
Reference: [11] P. Billingsley: Ergodic Theory and Information.J. Wiley, New York 1965. Zbl 0141.16702, MR 0192027
Reference: [12] R. L. Dobrushin: A general formulation of the basic Shannon theorem of information theory.(in Russian). Uspehi mat. nauk 14 (1959), 3-104. MR 0107574
Reference: [13] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources.Kybernetika 6 (1970), 2, 127-148. Zbl 0245.94013, MR 0275979
Reference: [14] R. M. Gray L. D. Davisson: Source coding without the ergodic assumption.IEEE Trans. Inform. Theory 20 (1974), 502-516. MR 0476163
Reference: [15] Š. Šujan: Block transmissibility and quantization.(submitted).
Reference: [16] F. Topsøe: Preservation of weak convergence under mappings.Ann. Math. Statist. 38 (1967), 1661-1665. MR 0219097
Reference: [17] Š. Šujan: On the capacity of asymptotically mean stationary channels.Kybernetika 17 (1981), 3, 222-233. MR 0628210
Reference: [18] K. Jacobs: Über die Struktur der mittleren Entropie.Math. Z. 78 (1962), 33-43. Zbl 0105.32801, MR 0142717
Reference: [19] J. C. Kieffer: Some universal noiseless multiterminal source coding theorems.Inform. and Control 46 (1980), 93-107. Zbl 0452.94013, MR 0600773
Reference: [20] K. Winkelbauer: On discrete information sources.Trans. 3rd Prague Conf. Inform. Theory, NČSAV Prague 1964, 765-830. Zbl 0126.35702, MR 0166000
Reference: [21] K. Winkelbauer: On the capactiy of decomposable channels.Trans. 6th Prague Conf. Inform. Theory, Academia, Prague 1973, 903-914. MR 0371509
Reference: [22] R. M. Gray D. L. Neuhoff P. C. Shields: A generalization of Ornstein's d-distance with applications to information theory.Ann. Prob. 3 (1975), 315-328. MR 0368127
.

Files

Files Size Format View
Kybernetika_17-1981-6_1.pdf 652.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo