Previous |  Up |  Next

Article

Title: Solution to the optimality equation in a class of Markov decision chains with the average cost criterion (English)
Author: Cavazos-Cadena, Rolando
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 1
Year: 1991
Pages: 23-37
.
Category: math
.
MSC: 60J05
MSC: 90C40
idZBL: Zbl 0734.90112
idMR: MR1099512
.
Date available: 2009-09-24T18:22:50Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125657
.
Reference: [1] R. B. Ash: Real Analysis and Probability.Academic Press, New York 1972. MR 0435320
Reference: [2] J. S. Baras D.-J. Ma, A. M. Makowski: K competing queues with geometric service requirements and linear costs: The fie rule is always optimal.Systems Control Lett. 6(1985), 3, 173-180. MR 0801867
Reference: [3] P. Biliingsley: Convergence of Probability Measures.Wiley, New York 1968. MR 0233396
Reference: [4] V. S. Borkar: On minimum cost per unit of time control of Markov chains.SIAM J. Control Optim. 22 (1984), 6, 965-978. MR 0762632
Reference: [5] R. Cavazos-Cadena: Weak conditions for the existence of optimal stationary policies in average Markov decision chains with unbounded costs.Kybernetika 25 (1989), 3, 145- 156. Zbl 0673.90092, MR 1010178
Reference: [6] R. Cavazos-Cadena, L. I. Sennott: Comparing recent assumptions for the existence of average optimal stationary policies (submitted for publication).
Reference: [7] K. Hinderer: Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter.Springer-Verlag, Berlin-Heidelberg-New York 1970. Zbl 0202.18401, MR 0267890
Reference: [8] M. Loeve: Probability Theory I.Springer-Verlag, New York-Berlin -Heidelberg 1977. Zbl 0359.60001, MR 0651017
Reference: [9] J. Munkres: Topology, a First Course.Prentice-Hall, Englewood Cliffs, New Jersey 1975. Zbl 0306.54001, MR 0464128
Reference: [10] P. Nain, K. W. Ross: Optimal priority assignment with hard constraints.IEEE Trans. Automat. Control 5/(1986), 10, 883-888. MR 0855542
Reference: [11] S. M. Ross: Applied Probability Models with Optimization Applications.Holden-Day, San Francisco, California 1970. Zbl 0213.19101, MR 0264792
Reference: [12] L. I. Sennot: A new condition for the existence of optimal stationary policies in average cost Markov decision processes.Oper. Res. Lett. 5 (1986), 17 - 23. MR 0845763
Reference: [13] L. I. Sennot: A new condition for the existence of optimum stationary policies in average cost Markov decision processes - unbounded cost case.Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece 1986, pp. 1719-1721.
Reference: [14] L. C Thomas: Connectedness conditions for denumerable state Markov decision processes.In: Recent Developments in Markov Decision Processes (R. Hartley, L. C. Thomas and D. J. White, eds.), Academic Press, New York 1980, pp. 181 - 204.
.

Files

Files Size Format View
Kybernetika_27-1991-1_3.pdf 737.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo