Previous |  Up |  Next

Article

Title: On structural approximating multivariate discrete probability distributions (English)
Author: Grim, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 20
Issue: 1
Year: 1984
Pages: 1-17
.
Category: math
.
MSC: 62E20
MSC: 62E99
MSC: 62H05
MSC: 62H12
MSC: 65C99
idZBL: Zbl 0547.62034
idMR: MR741419
.
Date available: 2009-09-24T17:38:27Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125676
.
Reference: [1] D. T. Brown: A note on approximations to discrete probability distributions.Inform. and Control 2 (1959), 4, 386-392. Zbl 0117.14804, MR 0110598
Reference: [2] C. K. Chow: Tree dependence in normal distributions.International Symposium on Information Theory, Nordwijk, The Netherlands 1970.
Reference: [3] C. K. Chow, C. N. Liu: Approximating discrete probability distributions with dependence trees.IEEE Trans. Inform. Theory IT-14 (1968), 3, 462-467. Zbl 0165.22305
Reference: [4] C. K. Chow, T. J. Wagner: Consistency of an estimate of tree-dependent probability distribution.IEEE Trans. Inform. Theory IT-19 (1973), 5, 369-371.
Reference: [5] W. E. Deming, F. F. Stephan: On a least squares adjustement of a sampled frequency table when the expected marginal totals are known.Ann. Math. Statist. 77 (1940), 427-444. MR 0003527
Reference: [6] W. A. Gibson: Three multivariate models: factor analysis, latent structure analysis and latent profile analysis.Psychometrika 24 (1959), 229 - 252. MR 0109097
Reference: [7] J. Grim: On estimation of multivariate probability density functions for situation recognition in large scale systems.In: Proceedings of Third Formator Symposium (J. Benes, L. Bakule, eds.), Academia, Prague 1979. Zbl 0485.93006
Reference: [8] J. Grim: On numerical evaluation of maximum-likelihood estimates for finite mixtures of distributions.Kybernetika 18 (1982), 3, 173-190. Zbl 0489.62028, MR 0680154
Reference: [9] J. Grim: Application of finite mixtures to multivariate statistical pattern recognition.In: Proceedings of DIANA Conference held in Liblice near Prague, September 27 - October 1, 1982.
Reference: [10] C. T. Ireland, S. Kullback: Contingency tables with given marginals.Biometrika 55 (1968), 179-188. Zbl 0155.26701, MR 0229329
Reference: [11] A. Д. Юдин: Об информативных структурах многомерных случайных величин.(On information structures of multidimensional random variables.) Известия AH CCCP - Teхническая кибернетика (1977), 6, 135-144. Zbl 1170.01341
Reference: [12] H. H. Ku, S. Kullback: Approximating discrete probability distributions.IEEE Trans. Inform. Theory IT-15 (1969), 444-447. MR 0243669
Reference: [13] S. Kullback: Probability densities with given marginals.Ann. Math. Statist. 39 (1968), 4, 1236-1243. Zbl 0165.20303, MR 0229330
Reference: [14] P. F. Lazarsfeld, N. W. Henry: Latent structure analysis.Houghton Mifflin, Boston 1968. Zbl 0182.52201
Reference: [15] P. M. Lewis: Approximating probability distributions to reduce storage requirements.Inform. and Control 2 (1959), 214-225. Zbl 0095.32602, MR 0110597
Reference: [16] A. Perez: $\epsilon$-admissible simplification of the dependence structure of a set random variables.Kybernetika 13 (1977), 6, 439-449. MR 0472224
Reference: [17] R. C. Prim: Shortest connection networks and some generalizations.Bell System Tech. J. 36 (1957), 1389-1401.
Reference: [18] F. F. Stephan: An iterative method of adjusting sample frequency tables when expected marginal totals are known.Ann. Math. Statist. 13 (1942), 166- 178. Zbl 0060.31505, MR 0006674
.

Files

Files Size Format View
Kybernetika_20-1984-1_1.pdf 967.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo