Previous |  Up |  Next

Article

Title: Linear optimal control system with incomplete information about state of system (English)
Title: Lineární optimální regulační obvody s neúplnou informací o stavu systému (Czech)
Author: Fink, Miloš
Author: Štecha, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 7
Issue: 6
Year: 1971
Pages: (467)-491
Summary lang: Czech
.
Category: math
.
MSC: 49B15
MSC: 49L99
MSC: 93C05
MSC: 93C55
MSC: 93C99
idZBL: Zbl 0266.49020
idMR: MR0322633
.
Date available: 2009-09-24T16:21:47Z
Last updated: 2012-06-04
Stable URL: http://hdl.handle.net/10338.dmlcz/125681
.
Reference: [1] Athans M., Falb P.: Optimal Control.Mc Graw-Hill, N.Y. 1966. Zbl 0196.46303, MR 0204181
Reference: [2] Athans M.: The Matrix Minimum Principle.Information and Control 11 (1968), 6, 592-606. MR 0228275
Reference: [3] Athans M., Levin W. S.: On the Determination of Optimal Constant Output Feedback Gains for Linear Multivariable Systems.IEEE Trans. on Aut. Control AC-15 (1970), 1, 44-49. MR 0274138
Reference: [4] Athans M., Levin W. S.: On the Design of Optimal Control Systems.Proceedings of 6-th Allerton Conference on System and Circuit Theory (1968), 661- 670. MR 0263496
Reference: [5] Bellman R.: Introduction to Matrix Analysis.Mc Graw-Hill, N.Y. 1960. Zbl 0124.01001, MR 0122820
Reference: [6] Dabke K. P.: Suboptimal linear Regulators with Incomplete State Feedback.IEEE Trans. on Aut. Control AC-15 (1970), 1, 120-122.
Reference: [7] Ferguson J. D., Rekasius Z. V.: Optimal Control Systems.IEEE Trans. on Aut. Control AC-14 (1969), 2. MR 0243874
Reference: [8] Fink M.: Lineární regulační obvody s neúplnou informací o stavu systému.(Linear Control Circuits with Incomplete Information about State nf the System). Thesis. Pгaha 1970.
Reference: [9] Kalman R. E.: When is a Linear Control System Optimal.Jour. of Basic Eng. 86 (1964), 1, 51-60.
Reference: [10] Kreindler E., Hedrick J. K.: On Equivalence of Quadratic Loss Functions.Intern. Jouгn. Control 11 (1970), 2, 213-222. Zbl 0186.22805, MR 0272431
Reference: [11] Leuenberger D. G.: Observers for Multivariable Systems.IEEE Trans. on Aut. Control AC-11 (1966), 2, 190-199.
Reference: [12] Luenberger D. G.: Observing the State of a Linear System.IEEE Trans. Military Electronics ME-8 (1964), 2, 74-80.
Reference: [13] Mann F. T.: Suboptimal control of Linear Time Invariant Systems.IEEE Trans. on Aut. Control AC-15 (1970), 1, 112-114. MR 0274139
Reference: [14] Newman M. M.: Specific Optimal Control of the Linear Regularor Using a Dynamic Controller Based on the Minimal Order Luenberger Observer.Int. J. Contгol 12 (1970), 1, 33-48. MR 0272464
Reference: [15] Pearcon J. B., Ding C. Y.: Compensator Design for Multivariable Control Systems.IEEE Trans. on Aut. Control AC-14 (1969), 2, 130-134. MR 0243880
Reference: [16] Rugh W. J., Murphy G. J.: System Equivalent Optimal Control Problems.Proceed. 6-th Allerton Conference on System and Circuit Theory (1968), 690-699. MR 0263503
Reference: [17] Sarma I. G., Jayrai C.: On the Use of Observers in Finite Time Optimal Regulator Problems.Int. Journ. Control 11 (1970), 3, 489-498.
Reference: [18] Stříbrský A.: Numerické metody výpočtu optimálních regulačních pochodů podle principu maxima.(Numerical Methods for Computing Optimal Controlled Circuits by Maximum Principle). Thesis. Praha 1969.
Reference: [19] Štecha J.: Některé metody výpočtu optimálních řídících systémů podle principu maxima.(Some Methods for Computing Optimal Controlled Systems by Maximum Principle). CSc Thesis. Praha 1970.
.

Files

Files Size Format View
Kybernetika_07-1971-6_6.pdf 2.084Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo