Previous |  Up |  Next

Article

Title: Structure of linear systems: Geometric and transfer matrix approaches (English)
Author: Commault, Christian
Author: Lafay, Jean F.
Author: Malabre, Michel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 3
Year: 1991
Pages: 170-185
.
Category: math
.
MSC: 93-01
MSC: 93B10
MSC: 93B27
MSC: 93C05
MSC: 93C80
idZBL: Zbl 0746.93036
idMR: MR1116831
.
Date available: 2009-09-24T18:24:37Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125813
.
Reference: [1] H. Aling, J. M. Schumacher: A nine fold canonical decomposition for linear systems.Internat. J. Control 39 (1984), 779-805. Zbl 0539.93007, MR 0738723
Reference: [2] C Commault J. Descusse J. F. Lafay, M. Malabre: New decoupling invariants: the essential orders.Internat. J. Control 44 (1986), 689-700.
Reference: [3] J. Descusse, J. M. Dion: On the structure at infinity of linear square decouplable systems.IEEE Trans. Automat. Control AC-27 (1982), 971-974. MR 0680500
Reference: [4] J. Descusse J. F. Lafay, M. Malabre: Solution of Morgan's problem.IEEE Trans. Automat. Control AC-33 (1988), 732-739. MR 0950794
Reference: [5] J. M. Dion, C Commault: The minimal delay decoupling problem: feedback implementation with stability.SIAM J. Control 26 (1988), 66-88. Zbl 0646.93049, MR 0923304
Reference: [6] P. L. Falb, W. Wolovich: Decoupling in the design and synthesis of multivariable systems.IEEE Trans. Automat. Control AC-12 (1967), 651 - 669.
Reference: [7] G. Forney: Minimal bases of rational vector spaces with application to multivariable linear systems.SIAM J. Control 13 (1975), 493-520. MR 0378886
Reference: [8] M. L. J. Hautus, H. Heymann: Linear feedback: An algebraic approach.SIAM J. Control 76(1978), 83-105. Zbl 0385.93015, MR 0476024
Reference: [9] M. L. J. Hautus, H. Heymann: Linear feedback decoupling: Transfer function analysis.IEEE Trans. Automat. Control AC-28 (1983), 823-832. Zbl 0523.93035, MR 0717840
Reference: [10] T. Koussiouris: A frequency domain approach to the block decoupling problem, part 2.Internat. J. Control 32 (1980), 443-447. MR 0587180
Reference: [11] S. Icart J. F. Lafay, M. Malabre: Geometric characterization of the interconnection zeros for controllable regularly decouplable systems.Joint Conference in Control Theory, Genova 1990.
Reference: [12] S. Icart, J. F. Lafay: Decoupling with stability for a class of linear systems via static state feedback.ECC91, Grenoble, juillet 1991.
Reference: [13] J. J. Loiseau: Some geometric considerations about the Kronecker normal form.Internat. J. Control 42 (1985), 1411-1431. Zbl 0609.93014, MR 0818345
Reference: [14] M. Malabre: Structure á l'infini des triplets invariants: application á la poursuite parfaite de modéle.Analysis and Optimisation of Systems - Proceedings of the Fifth International Conference on Analysis and Optimization of Systems Versailles 1982 (A. Bensoussan, J. L. Lions, eds.; Lecture Notes in Control and Information Sciences 44), Springer-Verlag, Berlin 1982. Zbl 0566.93009, MR 0833317
Reference: [15] M. Malabre, V. Kučera: Infinite structure and exact model matching problem; a geometric approach.IEEE Trans. Automat. Control AC-29 (1984), 226 - 268.
Reference: [16] M. Malabre: Generalized linear systems: geometric and structural approaches.Linear Algebra Appl. 122/123/124 (1989), 591-624. Zbl 0679.93048, MR 1020003
Reference: [17] M. Malabre, R. Rabah: Zeros at infinity for infinite dimensional systems.Proc. M.T.N.S.89 Amsterdam, Vol. 1, Birkhauser-Verlag, Basel-Boston 1990, pp. 199-206. Zbl 0726.93041, MR 1115331
Reference: [18] C. Moog: Inversion, decouplage, poursuite de modele des systemes non lineaires.These es Sciences, Nantes 1987.
Reference: [19] A. S. Morse: Structural invariants of linear multivariable systems.SIAM J. Control 11 (1973), 446-465. Zbl 0259.93011, MR 0386762
Reference: [20] H. H. Rosenbrock: State Space and Multivariable Theory.J. Wiley, New York 1970. Zbl 0246.93010, MR 0325201
Reference: [21] J. S. Thorp: The singular pencil of a linear dynamical system.Internat. J. Control 18 (1973), 577-596. Zbl 0262.93020, MR 0342229
Reference: [22] J. C. Willems: Almost invariant subspaces; an approach to high gain feedback design.Part 1: almost controlled subspaces. IEEE Trans. Automat. Control AC-26 (1981), 235 - 252. Zbl 0463.93020, MR 0609263
Reference: [23] W. A. Wolovich, P. Falb: Invariants and canonical forms under dynamic compensation.SIAM J. Control 11 (1976), 998-1008. Zbl 0344.93019, MR 0424306
Reference: [24] W. M. Wonham: Linear Multivariable Control: a Geometric Approach.Springer-Verlag, New York 1979. Zbl 0424.93001, MR 0569358
.

Files

Files Size Format View
Kybernetika_27-1991-3_2.pdf 1.022Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo