Previous |  Up |  Next

Article

Title: Solution of the marginal problem and decomposable distributions (English)
Author: Jiroušek, Radim
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 27
Issue: 5
Year: 1991
Pages: 403-412
.
Category: math
.
MSC: 60E05
MSC: 68T30
idZBL: Zbl 0752.60009
idMR: MR1132602
.
Date available: 2009-09-24T18:27:22Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125857
.
Reference: [1] I. Csiszár: $I$-divergence geometry of probability distributions and minimization problems.Ann. Probab. 3 (1975), 146-158. MR 0365798
Reference: [2] W. E. Deming, F. F. Stephan: On a least square adjustment of a sampled frequency table when the expected marginal totals are known.Ann. Math. Statist. 11 (1940), 427-444. MR 0003527
Reference: [3] A. Feinstein: Foundations of Information Theory.McGraw-Hill, New York-Toronto- London 1958. Zbl 0082.34602, MR 0095087
Reference: [4] R. Jiroušek: A survey of methods used in probabilistic expert system for knowledge integration.Knowledge Based Systems 3 (1990), 1, 7-12.
Reference: [5] H. G. Kellerer: Verteilungsfunktionen mit gegeben Marginalverteilungen.Z. Warhsch. Verw. Gebiete 3 (1964), 247-270. MR 0175158
Reference: [6] F. M. Malvestuto: Computing the maximum-entropy extension of given discrete probability distributions.Coraput. Statist. Data Anal. 8 (1989), 299-311. Zbl 0726.62012, MR 1028405
Reference: [7] Lianwen Zhang: Studies on finding hyper tree covers for hypergraphs.Working Paper No. 198, School of Business, The University of Kansas, Lawrence 1988.
Reference: [8] R. E. Tarjan, M. Yannakakis: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.SIAM J. Comput. 13 (1984), 3, 566-579: Zbl 0545.68062, MR 0749707
.

Files

Files Size Format View
Kybernetika_27-1991-5_2.pdf 523.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo