Previous |  Up |  Next

Article

Title: Minimal degree solutions for the Bezout equation (English)
Author: Ballico, Edoardo
Author: Struppa, Daniele C.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 23
Issue: 5
Year: 1987
Pages: 360-364
.
Category: math
.
MSC: 12D10
MSC: 12E12
MSC: 13B25
MSC: 93B25
idZBL: Zbl 0628.12012
idMR: MR915687
.
Date available: 2009-09-24T18:01:28Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125882
.
Reference: [1] C. A. Berenstein, D. C. Struppa: On explicit solutions to the Bezout equation.Syst. Control Lett. 4 (1984), 33-39. Zbl 0538.15005, MR 0735250
Reference: [2] N. K. Bose: Applied Multidimensional Systems Theory.Van Nostrand, New York 1982. Zbl 0574.93031, MR 0652483
Reference: [3] G. Gentili, D. C. Struppa: Minimal degree solutions of polynomial equations.Kybernetika 23(1987), 1,44-53. Zbl 0624.13008, MR 0883906
Reference: [4] P. Griffiths, J. Harris: Principles of Algebraic Geometry.Wiley-Interscience, New York 1978. Zbl 0408.14001, MR 0507725
Reference: [5] H. Matsumura: Commutative Algebra.Benjamin, New York 1970. Zbl 0211.06501, MR 0266911
Reference: [6] M. Šebek: 2-D polynomial equations.Kybernetika 19 (1983), 212-224. MR 0716650
Reference: [7] E. D. Sontag: Linear systems over commutative rings: a (partial) updated survey.In: Proceedings IFAC/81, Kyoto, Japan 1981. MR 0735820
.

Files

Files Size Format View
Kybernetika_23-1987-5_2.pdf 303.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo