Previous |  Up |  Next

Article

Title: On a shadowing lemma in metric spaces (English)
Author: Žáčik, Tibor
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 2
Year: 1992
Pages: 137-149
Summary lang: English
.
Category: math
.
Summary: In the present paper conditions are studied, under which a pseudo-orbit of a continuous map $f:M\rightarrow M$, where $M$ is a metric space, is shadowed, in a more general sense, by an accurate orbit of the map $f$. (English)
Keyword: shadowing property
Keyword: shadowing lemma
Keyword: pseudo-orbit
MSC: 37B99
MSC: 37D99
MSC: 54C30
MSC: 54E35
MSC: 54H20
MSC: 58F08
MSC: 58F15
idZBL: Zbl 0808.54028
idMR: MR1165890
DOI: 10.21136/MB.1992.125908
.
Date available: 2009-09-24T20:51:24Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125908
.
Reference: [1] D. V. Anosov: Geodesic flows on compact Riemannian manifolds of negative curvatuгe.(in Russian), Pгoc. Steklov Inst. Math. 90 (1967), 3-209 English transl., Ameг. Math. Soc. Tгans. (1969). MR 0224110
Reference: [2] R. Bowen: $\omega$-limit sets foг Axiom A diffeomorphisms.J. Diff. Eq. 18 (1975), 333-339. MR 0413181, 10.1016/0022-0396(75)90065-0
Reference: [3] S. N. Chow X. D. Lin K. J. Palmer: A shadowing lemma with applications to semilinear parabolic equations.SIAM J. Math. Anal. 20 (1989). MR 0990862
Reference: [4] S. N. Chow K. J. Palmer: The accuгacy of numeгically computed oгbits of dynamical systems.to appear.
Reference: [5] E. M. Coven I. Kan J. A. Yorke: Pseudoorbit shadowing in the family of tent maps.Trans. Amer. Math. Soc. 308 (1988), 227-247. MR 0946440, 10.1090/S0002-9947-1988-0946440-2
Reference: [6] I. Ekeland: Some lemmas about dynamical systems.Math. Scand. 52 (262-268). Zbl 0515.58026, MR 0702957, 10.7146/math.scand.a-12005
Reference: [7] J. E. Franke J. Ғ. Selgrade: Hyperbolicity and chain recurгence.Ј. Diff. Eq. 26(1977), 27-36. MR 0467834
Reference: [8] S. M. Hammel J. A. Yorke C. Grebogi: Do numerical orbits of chaotic dynamical processes гepresent tгue oгbits?.Ј. Complexity 3 (1987), 136-145. MR 0907194, 10.1016/0885-064X(87)90024-0
Reference: [9] S. M. Hammel J. A. Yorke C. Grebogi: Numerical orbits of chaotic pгocesses гepresent tгue orbits.Bull. Ameг. Math. Soc. 19 (1988), 465-470. MR 0938160, 10.1090/S0273-0979-1988-15701-1
Reference: [10] K. R. Meyer G. R. Sell: An analytic proof of the shadowing lemma.Funkcialaj Ekvacioj 30 (1987), 127-133. MR 0915267
Reference: [11] K. J. Palmer: Exponential dichotomies, the shadowing lemma and transversal homoclinic points.Dynamic Reported 1 (1988), 265-306. Zbl 0676.58025, MR 0945967, 10.1007/978-3-322-96656-8_5
Reference: [12] C. Robinson: Stability theorems and hypeгbolicity in dynamical systems.Rocky Mount. Ј. Math. 7 (1977), 425-437. MR 0494300, 10.1216/RMJ-1977-7-3-425
.

Files

Files Size Format View
MathBohem_117-1992-2_4.pdf 1.536Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo