Previous |  Up |  Next

Article

Keywords:
monotone type multivalued operators; accretive operators; duality mapping; Banach space
Summary:
Some properties of monotone type multivalued operators including accretive operators and the duality mapping are studied in connection with the structure of Banach spaces.
References:
[1] J. Ciorănescu: Aplicaţii de dualitate in analiza funktională neliniare. Ed. Acad. Rep. Soc., Romania, Bucuresti, 1974.
[2] D. F. Cudia: The geometry of Banach spaces: Smoothness. Trans. Amer. Math. Soc. 110 (1964), 284-314. DOI 10.1090/S0002-9947-1964-0163143-9 | MR 0163143 | Zbl 0123.30701
[3] W.J. Davis W.B. Johnson: A renoming of nonreflexive Banach spaces. Proc. Amer. Math. Soc. 37 (1973), 486-488. DOI 10.1090/S0002-9939-1973-0310595-8 | MR 0310595
[4] C. R. De Prima W. V. Petryshyn: Remarks on strict monotoniaty and surjectivity properties of duality mappings defined on real normed linear spaces. Math. Zeitschr. 123 (1971), 49-55. DOI 10.1007/BF01113932 | MR 0308865
[5] J. Diestel: Geometry of Banach space-Selected Topics. Lecture Notes in Math. 485, Springer-Verlag, 1975. MR 0461094
[6] G. Emmanuele: A note about certain geometric properties of the norm of a dual Banach space. Boll. U.M.I. (7) 1-A (1987), 181-185. MR 0898277 | Zbl 0623.46009
[7] M. Fabian: On singlevaluedness and strong continuity of maximal monotone mappings. Comment. Math. Univ. Carolinae 18(1977), 19-39. MR 0442764
[8] M. Fabian: Once more on continuity of maximal monotone mappings. Comment. Math. Univ. Carolinae 18 (1977), 105-114. MR 0442765
[9] S. P. Fitzpatrick: Continuity of non-linear monotone operators. Proc. Amer. Math. Soc. 62 (1977), 111-116. DOI 10.1090/S0002-9939-1977-0425687-6 | MR 0425687
[10] P. M. Fitzpatrick P. Hess T. Kato: Local boundedness of monotone type operators. Proc. Japan. Acad. Ser. A-Math. Sci. 48 (1972), 275-277. MR 0312336
[11] J. R. Giles: Convex Analysis with Application in the Differentiation of Convex Functions. Pitman, London, 1982. MR 0650456 | Zbl 0486.46001
[12] J. R. Giles D. A. Gregory B. Sims: Geometrical implications of upper semicontinuity of the duality mappings on a Banach space. Pacific J. Math. 79 (1978), 99-109. DOI 10.2140/pjm.1978.79.99 | MR 0526669
[13] J. P. Gosez E. Lami Dozo: Some geometric properties related to the fixed point theory for nonexpansive mappings. Pacific. J. Math. 40 (1972), 565-573. DOI 10.2140/pjm.1972.40.565 | MR 0310717
[14] T. Kato: Accretive operators and nonlinear equations in Banach spaces. Proc. Symp. Pure Math., Amer. Math. Soc., Providence, R.I. 18 (1970), 138-161. MR 0271782
[15] P. S. Kenderov: Multivalued monotone operators are almost everywhere single-valued. Studia Math. 56 (1976), 199-203. DOI 10.4064/sm-56-3-199-203 | MR 0428122
[16] P. S. Kenderov: Monotone operators in Asplund spaces. C.R. Acad. Bulgar. Sci. 30 (1977), 263-264. MR 0463981 | Zbl 0377.47036
[17] N. Kenmochi: Accretive mappings in Banach spaces. Hiroshima Math. J. 2 (163-177). DOI 10.32917/hmj/1206137811 | MR 0326503
[18] J. Kolomý: Maximal monotone mappings in Banach spaces. Acta Univ. Carolinae 33 (1992), 63-67. MR 1217781
[19] J. Kolomý: On accretive multivalued mappings in Banach spaces. Comment. Math. Univ. Carolinae 31 (1990), 701-710. MR 1091367
[20] J. Kolomý: Maximal monotone and accretive multivalued mappings and structure of Banach spaces. Function Spaces. Proc. Int. Conf. Poznan, 1986 (ed. J. Musielak), Teubner-Texte zur Mathematik 103 (1988), 170-177. MR 1066532
[21] J. Kolomý: Resolvents and selections of accretive mappings in Banach spaces. Proc. 18th Winter School, Srní 1990, Acta Univ. Carolinae 31 (1990), 51-58. MR 1101415
[22] J. Kolomý: A note on Banach spaces and subdifferentials of convex functions. Proc. 20th Winter School, Strobl, Austria 1992, Acta Univ. Carolinae 33 (1992), 73-83. MR 1287227
[23] R. R. Phelps: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Math. 1364, Springer-Verlag, 1989. MR 0984602 | Zbl 0658.46035
[24] J. Prüss: A characterization of uniform convexity and applications to accretive operators. Hiroshima Math. J. 11 (1981), 229-234. DOI 10.32917/hmj/1206134097 | MR 0620534
[25] S. Troyanski: On locally uniformly convex and differentiate norms in certain nonseparable Banach spaces. Studia Math. 37(1971), 173-180. DOI 10.4064/sm-37-2-173-180 | MR 0306873
[26] L. Veselý: Some new results on accretive multivalued operators. Comment. Math. Univ. Carolinae 30 (1989), 45-55. MR 0995700
Partner of
EuDML logo