Previous |  Up |  Next

Article

Title: Dirichlet functions of reflected Brownian motion (English)
Author: Engelbert, Hans-Jürgen
Author: Wolf, Jochen
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 125
Issue: 2
Year: 2000
Pages: 235-247
Summary lang: English
.
Category: math
.
Summary: We give a complete analytical characterization of the functions transforming reflected Brownian motions to local Dirichlet processes. (English)
Keyword: Dirichlet process
Keyword: local time
Keyword: reflected Brownian motion
MSC: 60G48
MSC: 60H99
MSC: 60J65
idZBL: Zbl 0969.60043
idMR: MR1768811
DOI: 10.21136/MB.2000.125954
.
Date available: 2009-09-24T21:42:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125954
.
Reference: [1] Assing S., Schmidt W.: Continuous Strong Markov Processes in Dimension 1 - A Stochastic Calculus Approach.Lecture Notes in Math. 1688, Springer, Berlin, 1998. MR 1724313, 10.1007/BFb0096157
Reference: [2] Bertoin J.: Les processus de Dirichlet et tant qu' Espace de Banach.Stochastics 18 (1988), 155-168. MR 0861819, 10.1080/17442508608833406
Reference: [3] Bertoin J.: Une application du calcul du nombre de montées et de descentes aux fonctions de martingales locales continues.Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 201-207. Zbl 0646.60056, MR 0953117
Reference: [4] Bouleau N., Yor M.: Sur la variation quadratique des temps locaux de certaines semi-martingales.C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 491-494. MR 0612544
Reference: [5] Çinlar E., Jacod J., Protter P., Sharpe M. J.: Semimartingales and Markov processes.Z. Wahrscheinlichkeitstheorie verw. Gebiete 54 (1980), 161-219. Zbl 0443.60074, MR 0597337
Reference: [6] Föllmer H.: Calcul d'Itô sans probabilités.Sém. Prob. XV, Lecture Notes in Math. 850. Springer, Berlin, 1981, pp. 143-150. Zbl 0461.60074, MR 0622559, 10.1007/BFb0088364
Reference: [7] Föllmer H.: Dirichlet processes.Lecture Notes in Math. 851. Springer, Berlin, 1981, pp. 476-478. Zbl 0462.60046, MR 0621001, 10.1007/BFb0088738
Reference: [8] Föllmer H., Protter P., Shiryaev A.N.: Quadratic covariation and an extension of Itô's formula.Bernoulli 1 (1995), 149-169. MR 1354459, 10.2307/3318684
Reference: [9] Fukuskima M., Oshima Y., Takeda M.: Dirichlet Forms and Symmetric Markov Processes.Walter de Gruyter, Berlin, 1994. MR 1303354
Reference: [10] Protter P.: Stochastic Integration and Differential Equations.Springer, Berlin, 1992.
Reference: [11] Revuz D., Yor M.: Continuous Martingales and Brownian Motion.2nd edition, Springer, Berlin, 1994. Zbl 0804.60001, MR 1303781
Reference: [12] Russo F., Vallois P.: Forward, backward and symmetric stochastic integration.Probab. Theory Related Fields 97 (1993), 403-421. Zbl 0792.60046, MR 1245252, 10.1007/BF01195073
Reference: [13] Russo F., Vallois P.: The generalized covariation process and Itô formula.Stochastic Process. Appl. 59 (1995), 81-104. Zbl 0840.60052, MR 1350257, 10.1016/0304-4149(95)93237-A
Reference: [14] Russo F., Vallois P.: Itô formula for $C^1$ -functions of semimartingales.Probab. Theory Related Fields 104 (1996), 27-41. MR 1367665, 10.1007/BF01303801
Reference: [15] Schmidt W.: Über streng Markovsche stetige Semimartingale.Habilitationsschrift. Friedrich-Schiller-Universität, Jena.
Reference: [16] Schmidt W.: On stochastic differential equations with reflecting barriers.Math. Nachr. 142 (1989), 135-148. Zbl 0699.60043, MR 1017375, 10.1002/mana.19891420109
Reference: [17] Wolf J.: Zur stochastischen Analysis stetiger lokaler Dirichletprozesse.Dissertation. Friedrich-Schiller-Universität, Jena. Zbl 0879.60061
Reference: [18] Wolf J.: Transformations of semimartingales and local Dirichlet processes.Stochastics Stochastics Rep. 62 (1997), 65-101. Zbl 0890.60043, MR 1489182, 10.1080/17442509708834128
Reference: [19] Wolf J.: An Itô formula for local Dirichlet processes.Stochastics Stochastics Rep. 62 (1997), 103-115. Zbl 0890.60044, MR 1489183, 10.1080/17442509708834129
.

Files

Files Size Format View
MathBohem_125-2000-2_12.pdf 2.175Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo