Article
Keywords:
completeness; functional differential equation; solution; delay
Summary:
Our aim in this paper is to obtain sufficient conditions under which for every $\xi \in R^n$ there exists a solution $x$ of the functional differential equation $\dot{x}(t)=\int^t_c[d_sQ(t,s)]f(t,x(s)),\ t\in [t_0,T]$ such that $lim_{t\rightarrow T-}x(t)=\xi$.
References:
[2] I. Győri:
On existence of the limits of solutions of functional differential equations. Colloquia Mathematica Societatis János Bolyai 30. Qualitative Theory of Differential Equations, Szeged (Hungary), (1979), North-Holland Publ. Company, Amsterdam, (1980), 325-362.
MR 0680602
[4] I. Győri, I. P. Stavroulakis:
Positive solutions of functional differential equations. Boll. Un. Mat. Ital. B (7) 3 (1989), 185-198.
MR 0997338
[6] P. Hartman:
Ordinary Differential Equations. John Wiley & Sons, New York-London-Sydney, 1964; Russian transl., Izdatel'stvo "Mir", Moscow.
MR 0171038 |
Zbl 0125.32102
[7] J. Jarník, J. Kurzweil:
Ryabov's special solutions of functional differential equations. Boll. Un. Mat. Ital. (4) 11 Suppl. fasc. 3 (1975), 198-208.
MR 0454264 |
Zbl 0319.34066
[9] Yu. A. Ryabov:
Certain asymptotic properties of linear systems with small time lag. Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom Univ. Druzby Narodov Patrisa Lumumby 3 (1965), 153-164. (In Russian.)
MR 0211010
[10] M. Švec:
Some properties of functional differential equations. Boll. Un. Mat. Ital. (4) 11 Suppl. fasc. 3 (1975), 467-477.
MR 0430476
[11] M. Švec:
Some problems concerning the equivalence of two systems of differential equations. Proceedings Equadiff 6 Brno (1985), 171-179.
MR 0877120
[12] A. M. Zverkin:
Pointwise completeness of systems with delay. Differentsial'nye Uravneniya 9 (1973), 430-436. (In Russian.)
MR 0316855