Previous |  Up |  Next

Article

Title: Tensor approach to multidimensional webs (English)
Author: Vanžurová, Alena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 3
Year: 1998
Pages: 225-242
Summary lang: English
.
Category: math
.
Summary: An anholonomic $(n+1)$-web of dimension $r$ is considered as an $(n+1)$-tuple of $r$-dimensional distributions in general position. We investigate a family of $(1,1)$-tensor fields (projectors and nilpotents associated with a web in a natural way) which will be used for characterization of all linear connections on a manifold preserving the given web. (English)
Keyword: anholonomic web
Keyword: web
Keyword: manifold
Keyword: connection
MSC: 53A60
MSC: 53B05
idZBL: Zbl 0934.53011
idMR: MR1645426
DOI: 10.21136/MB.1998.126070
.
Date available: 2009-09-24T21:31:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126070
.
Reference: [Ak] M. A. Akivis: Three-webs of multidimensional surfaces.Trudy Geom. Sem. 2 (1969), 7-31. (In Russian.) MR 0254760
Reference: [Ac] J. Aczél: Quasigroups, nets and nomograms.Adv. in Math. 1 (1965), 383-450. MR 0193174, 10.1016/0001-8708(65)90042-3
Reference: [A&S] M. A. Akivis A. M. Shelekhov: Geometry and Algebra of Multidimensional Three-Webs.Kluwer Acad. Publishers, Dordrecht, 1992. MR 1196908
Reference: [Bo] G. Bol: Über 3-Gewebe in vierdimensionalen Raum.Math. Ann. 110 (1935), 431-463. MR 1512949, 10.1007/BF01448038
Reference: [Ch] S. S. Chern: Eine Invariantentheorie der Dreigewebe aus r-dimensionalen Mannigfaltigkeiten im $R_{2r}$.Abh. Math. Sem. Univ. Hamburg 11 (1936), 333-358. 10.1007/BF02940731
Reference: [Ch1] S. S. Chern: Web Geometry.Bull. AMS 6 (1982), 1-9. Zbl 0483.53013, MR 0634430
Reference: [G] V. V. Goldberg: Theory of Multicodimensional (n+1)-Webs.Kluwer Acad. Publishers, Dordrecht, 1990. MR 0998774
Reference: [Ki] M. Kikkawa: Canonical connections of homogeneous Lie loops and 3-webs.Mem. Fac. Sci. Shimane Univ. 19 (1985), 37-55. Zbl 0588.53014, MR 0841222
Reference: [Ng] P. T. Nagy: Invariant tensor fields and the canonical connection of a 3-web.Aequationes Math. 35 (1988), 31-44. MR 0939620, 10.1007/BF01838155
Reference: [Sh] I. G. Shandra: On isotranslated $n \pi$-structure and connections preserving a non-holonomic (n + 1)-coweb.Webs and Quasigroups. Tver State University, Tversk, 1995, pp. 60-66. MR 1413340
Reference: [Va1] A. Vanžurová: On (3, 2, n)-webs.Acta Sci. Math. (Szeged) 55(1994), 657-677. Zbl 0828.53017, MR 1317181
Reference: [Va2] A. Vanžurová: On torsion of a 3-web.Math. Bohem. 120 (1995), 387-392. MR 1415086
Reference: [Va3] A. Vanžurová: Projectors of a 3-web.Proc. Conf. Dif. Geom. and Appl. Masaryk University, Brno, 1996, pp. 329-335. MR 1406353
Reference: [Va4] A. Vanžurová: Connections for non-holonomic 3-webs.Rend. Circ. Mat. Palermo 46 (1997), 169-176. MR 1469034
.

Files

Files Size Format View
MathBohem_123-1998-3_1.pdf 900.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo