Article
Keywords:
linear mapping; axonometry; singular values
Summary:
We show that a central linear mapping of a projectively embedded Euclidean $n$-space onto a projectively embedded Euclidean $m$-space is decomposable into a central projection followed by a similarity if, and only if, the least singular value of a certain matrix has multiplicity $\ge2m-n+1$. This matrix is arising, by a simple manipulation, from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates.
References:
                        
[2] Brauner H.: 
Lineare Abbildungen aus euklidischen Räumen. Beitr. Algebra u. Geometrie 21 (1986), 5-26. 
MR 0839966 | 
Zbl 0589.51004[3] Brauner H.: 
Zum Satz von Pohlke in n-dimensionalen euklidischen Räumen. Sitzungsber. österreich. Akad. Wiss., Math.-Natur. Kl. 195 (1986), 585-591. 
MR 0894185[4] Havel V.: 
On decomposition of singular mappings. (In Czech). Časopis Pěst. Mat. 85 (1960), 439-446. 
MR 0126456[6] Szabó J.: 
Eine analytische Bedingung dafür, daß eine Zentralaxonometrie Zentralprojektion ist. Publ. Math. Debrecen 44 (1994), 381-390. 
MR 1291984[7] Szabó J., Stachel H., Vogel H.: 
Ein Satz über die Zentralaxonometrie. Sitzungsber. österreich. Akad. Wiss., Math.-Natur. Kl. 203 (1994), 1-11. 
MR 1335603[8] Strang G.: 
Linear Algebra and Its Applications. Зrd ed. Harcourt Brace Jovanovich, San Diego, 1988. 
MR 0575349