Previous |  Up |  Next

Article

Title: Extending Peano derivatives (English)
Author: Fejzić, Hajrudin
Author: Mařík, Jan
Author: Weil, Clifford E.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 119
Issue: 4
Year: 1994
Pages: 387-406
Summary lang: English
.
Category: math
.
Summary: Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots,k$. (English)
Keyword: Peano derivatives
Keyword: Denjoy index
MSC: 26A24
idZBL: Zbl 0824.26003
idMR: MR1316592
DOI: 10.21136/MB.1994.126113
.
Date available: 2009-09-24T21:07:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126113
.
Reference: [1] Z. Buczolich: Second Peano derivatives are not extendable.Real Analysis Exch 14 (1988-89), 423-428. MR 0995982, 10.2307/44151957
Reference: [2] P. Bullen: Denjoy's index and porosity.Real Analysis Exch, 10 (1984-84), 85-144. MR 0795610, 10.2307/44151693
Reference: [3] A. Denjoy: Sur l'integration des coefficients differentiels d'order supérieur.Fundamenta Mathematicae 25 (1935), 273-326. 10.4064/fm-25-1-273-326
Reference: [4] M. J. Evans C. E. Weil: Peano derivatives: A survey.Real Analysis Exch, 7(1981-82), 5-24. MR 0646631
Reference: [5] H. Fejzić: Decomposition of Peano derivatives.Proc. Amer. Soc 119 (1993), no. 2, 599-609. MR 1155596, 10.1090/S0002-9939-1993-1155596-8
Reference: [6] H. Fejzić: The Peano derivatives.Doct. Dissertation. Michigan State University, 1992.
Reference: [7] H. Fejzić: On generalized Peano and Peano derivatives.Fundamenta Mathematicae 143 (1994), 55-74. MR 1234991, 10.4064/fm-143-1-55-74
Reference: [8] V. Jarník: Sur l'extension du domaine de definition des fonctions d'une variable, qui laisse intacte la derivabilite de la fonction.Bull international de l'Acad Sci de Boheme (1923).
Reference: [9] J. Mařík: Derivatives and closed sets.Acta Math. Hung. 43 (1-2) (1984), 25-29. MR 0731958
Reference: [10] G. Petruska, M. Laczkovich: Baire 1 functions, approximately continuous functions and derivatives.Acta Math Acad Sci Hungar, 25 (1974), 189-212. Zbl 0279.26003, MR 0379766, 10.1007/BF01901760
Reference: [11] C. E. Weil: The Peano derivative: What's known and what isn't.Real Analysis Exchange 9 (1983-1984), 354-365. MR 0766061, 10.2307/44153545
.

Files

Files Size Format View
MathBohem_119-1994-4_8.pdf 3.329Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo