Previous |  Up |  Next

Article

Title: A note on factorization of the Fermat numbers and their factors of the form $3h2\sp n+1$ (English)
Author: Křížek, Michal
Author: Chleboun, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 119
Issue: 4
Year: 1994
Pages: 437-445
Summary lang: English
.
Category: math
.
Summary: We show that any factorization of any composite Fermat number $F_m={2^{2}}^m+1$ into two nontrivial factors can be expressed in the form $F_m=(k2^n+1)(\ell2^n+1)$ for some odd $k$ and $\ell, k\geq 3, \ell \geq 3$, and integer $n\geq m+2, 3n<2^m$. We prove that the greatest common divisor of $k$ and $\ell$ is 1, $k+\ell\equiv 0\ mod 2^n,\ max(k,\ell)\geq F_{m-2}$, and either $3|k$ or $3|\ell$, i.e., $3h2^{m+2}+1|F_m$ for an integer $h\geq 1$. Factorizations of $F_m$ into more than two factors are investigated as well. In particular, we prove that if $F_m=(k2^n+1)^2(\ell2^j+1)$ then $j=n+1,3|\ell$ and $5|\ell$. (English)
Keyword: congruence properties
Keyword: Fermat numbers
Keyword: prime numbers
Keyword: factorization
Keyword: squarefreensess
MSC: 11A51
MSC: 11Y05
idZBL: Zbl 0822.11007
idMR: MR1316595
DOI: 10.21136/MB.1994.126115
.
Date available: 2009-09-24T21:08:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126115
.
Reference: [1] R. P. Brent: Factorization of the eleventh Fermat number.Abstracts Amer. Math. Soc. 10 (1989), 176-177.
Reference: [2] R. P. Brent J. M. Pollard: Factorization of the eight Fermat number.Math. Comp. 36 (1981), 627-630. MR 0606520, 10.1090/S0025-5718-1981-0606520-5
Reference: [3] J. Brillhart D. H. Lehmer J. L. Selfridge B. Tuckerman S. S. Wagstaff: Factorization of $b^n \pm 1$, b = 2,3,5,6,7,10,11,12 up to high powers.Contemporary Math. vol. 22, Amer. Math. Soc., Providence, 1988. MR 0715603
Reference: [4] L. E. Dickson: History of the theory of numbers, vol. I, Divisibility and primality.Carnegie Inst., Washington, 1919.
Reference: [5] G. H. Hardy E. M. Wright: An introduction to the theory of numbers.Clarendon Press, Oxford, 1945.
Reference: [6] W. Keller: Factors of Fermat numbers and large primes of the form $k 2^n +1$. II.Preprint Univ. of Hamburg, 1992, 1-40. MR 0717710
Reference: [7] A. K. Lenstra H. W. Lenstra, Jr. M. S. Manasse J. M. Pollard: The factorization of the ninth Fermat number.Math. Comp. 61 (1993), 319-349. MR 1182953, 10.1090/S0025-5718-1993-1182953-4
Reference: [8] M. A. Morrison J. Brillhart: A method of factoring and the factorization of $F_7$.Math. Comp. 29 (1975), 183-205. MR 0371800
Reference: [9] N. Robbins: Beginning number theory.W. C. Brown Publishers, 1993. Zbl 0824.11001
Reference: [10] H. C. Williams: How was $F_6$ factored?.Math. Comp. 61 (1993), 463-474. MR 1182248
.

Files

Files Size Format View
MathBohem_119-1994-4_11.pdf 909.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo