Previous |  Up |  Next

Article

Title: The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations (English)
Author: Raith, Peter
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 1
Year: 1997
Pages: 37-55
Summary lang: English
.
Category: math
.
Summary: In this paper piecewise monotonic maps $T [0,1]\to[0,1]$ are considered. Let $Q$ be a finite union of open intervals, and consider the set $R(Q)$ of all points whose orbits omit $Q$. The influence of small perturbations of the endpoints of the intervals in $Q$ on the dynamical system $(R(Q),T)$ is investigated. The decomposition of the nonwandering set into maximal topologically transitive subsets behaves very unstably. Nonetheless, it is shown that a maximal topologically transitive subset cannot be completely destroyed by arbitrary small perturbations of $Q$. Furthermore it is shown that every sufficiently "big" maximal topologically transitive subset of a sufficiently small perturbation of $(R(Q),T)$ is "dominated" by a topologically transitive subset of $(R(Q),T)$. (English)
Keyword: piecewise monotonic map
Keyword: nonwandering set
Keyword: topologically transitive subset
MSC: 37D99
MSC: 37E99
MSC: 54H20
MSC: 58F03
MSC: 58F15
MSC: 58f30
idZBL: Zbl 0896.58027
idMR: MR1446398
DOI: 10.21136/MB.1997.126187
.
Date available: 2009-09-24T21:22:33Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126187
.
Reference: [1] F. Hofbauer: The structure of piecewise monotonic transformations.Ergodic Theory Dynam. Systems 1 (1981), 159-178. Zbl 0474.28007, MR 0661817
Reference: [2] F. Hofbauer: Piecewise invertible dynamical systems.Probab. Theory Related Fields 72 (1986), 359-386. Zbl 0578.60069, MR 0843500, 10.1007/BF00334191
Reference: [3] F. Hofbauer P. Raith: Topologically transitive subsets of piecewise monotonic maps, which contain no periodic points.Monatsh. Math. 107 (1989), 217-239. MR 1008681, 10.1007/BF01300345
Reference: [4] M. Misiurewicz S. V. Shlyachkov: Entropy of piecewise continuous interval maps.European conference on iteration theory (ECIT 89), Batschuns, 1989 (Ch. Mira, N. Netzer, C. Simó, Gy. Targoński, eds.). World Scientific, Singapore, 1991, pp. 239-245. MR 1184170
Reference: [5] Z. Nitecki: Topological dynamics on the interval.Ergodic theory and dynamical systems, Vol. 2, Proceedings of the Special Year at the University of Maryland, 1979/1980 (A. Katok, ed.). Progress in Mathematics 21, Birkhauser, Boston, 1982, pp. 1-73. MR 0670074
Reference: [6] P. Raith: Hausdorff dimension for piecewise monotonic maps.Studia Math. 94 (1989), 17-33. Zbl 0687.58013, MR 1008236, 10.4064/sm-94-1-17-33
Reference: [7] P. Raith: Continuity of the Hausdorff dimension for piecewise monotonic maps.Israel J. Math. 80 (1992), 97-133. Zbl 0768.28010, MR 1248929, 10.1007/BF02808156
Reference: [8] P. Raith: Continuity of the Hausdorff dimension for invariant subsets of interval maps.Acta Math. Univ. Comenian. 63 (1994), 39-53. Zbl 0828.58014, MR 1342594
Reference: [9] P. Raith: The dynamics of piecewise monotonic maps under small perturbations.Preprint, Warwick, 1994. MR 1627314
Reference: [10] M. Urbański: Hausdorff dimension of invariant sets for expanding maps of a circle.Ergodic Theory Dynam. Systems 6 (1986), 295-309. MR 0857203
Reference: [11] M. Urbański: Invariant subsets of expanding mappings of the circle.Ergodic Theory Dynam. Systems 7 (1987), 627-645. MR 0922369
Reference: [12] P. Walters: An introduction to ergodic theory.Graduate Texts in Mathematics 79, Springer, New York, 1982. Zbl 0475.28009, MR 0648108, 10.1007/978-1-4612-5775-2
.

Files

Files Size Format View
MathBohem_122-1997-1_4.pdf 934.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo