Title:
|
The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations (English) |
Author:
|
Raith, Peter |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
122 |
Issue:
|
1 |
Year:
|
1997 |
Pages:
|
37-55 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper piecewise monotonic maps $T [0,1]\to[0,1]$ are considered. Let $Q$ be a finite union of open intervals, and consider the set $R(Q)$ of all points whose orbits omit $Q$. The influence of small perturbations of the endpoints of the intervals in $Q$ on the dynamical system $(R(Q),T)$ is investigated. The decomposition of the nonwandering set into maximal topologically transitive subsets behaves very unstably. Nonetheless, it is shown that a maximal topologically transitive subset cannot be completely destroyed by arbitrary small perturbations of $Q$. Furthermore it is shown that every sufficiently "big" maximal topologically transitive subset of a sufficiently small perturbation of $(R(Q),T)$ is "dominated" by a topologically transitive subset of $(R(Q),T)$. (English) |
Keyword:
|
piecewise monotonic map |
Keyword:
|
nonwandering set |
Keyword:
|
topologically transitive subset |
MSC:
|
37D99 |
MSC:
|
37E99 |
MSC:
|
54H20 |
MSC:
|
58F03 |
MSC:
|
58F15 |
MSC:
|
58f30 |
idZBL:
|
Zbl 0896.58027 |
idMR:
|
MR1446398 |
DOI:
|
10.21136/MB.1997.126187 |
. |
Date available:
|
2009-09-24T21:22:33Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126187 |
. |
Reference:
|
[1] F. Hofbauer: The structure of piecewise monotonic transformations.Ergodic Theory Dynam. Systems 1 (1981), 159-178. Zbl 0474.28007, MR 0661817 |
Reference:
|
[2] F. Hofbauer: Piecewise invertible dynamical systems.Probab. Theory Related Fields 72 (1986), 359-386. Zbl 0578.60069, MR 0843500, 10.1007/BF00334191 |
Reference:
|
[3] F. Hofbauer P. Raith: Topologically transitive subsets of piecewise monotonic maps, which contain no periodic points.Monatsh. Math. 107 (1989), 217-239. MR 1008681, 10.1007/BF01300345 |
Reference:
|
[4] M. Misiurewicz S. V. Shlyachkov: Entropy of piecewise continuous interval maps.European conference on iteration theory (ECIT 89), Batschuns, 1989 (Ch. Mira, N. Netzer, C. Simó, Gy. Targoński, eds.). World Scientific, Singapore, 1991, pp. 239-245. MR 1184170 |
Reference:
|
[5] Z. Nitecki: Topological dynamics on the interval.Ergodic theory and dynamical systems, Vol. 2, Proceedings of the Special Year at the University of Maryland, 1979/1980 (A. Katok, ed.). Progress in Mathematics 21, Birkhauser, Boston, 1982, pp. 1-73. MR 0670074 |
Reference:
|
[6] P. Raith: Hausdorff dimension for piecewise monotonic maps.Studia Math. 94 (1989), 17-33. Zbl 0687.58013, MR 1008236, 10.4064/sm-94-1-17-33 |
Reference:
|
[7] P. Raith: Continuity of the Hausdorff dimension for piecewise monotonic maps.Israel J. Math. 80 (1992), 97-133. Zbl 0768.28010, MR 1248929, 10.1007/BF02808156 |
Reference:
|
[8] P. Raith: Continuity of the Hausdorff dimension for invariant subsets of interval maps.Acta Math. Univ. Comenian. 63 (1994), 39-53. Zbl 0828.58014, MR 1342594 |
Reference:
|
[9] P. Raith: The dynamics of piecewise monotonic maps under small perturbations.Preprint, Warwick, 1994. MR 1627314 |
Reference:
|
[10] M. Urbański: Hausdorff dimension of invariant sets for expanding maps of a circle.Ergodic Theory Dynam. Systems 6 (1986), 295-309. MR 0857203 |
Reference:
|
[11] M. Urbański: Invariant subsets of expanding mappings of the circle.Ergodic Theory Dynam. Systems 7 (1987), 627-645. MR 0922369 |
Reference:
|
[12] P. Walters: An introduction to ergodic theory.Graduate Texts in Mathematics 79, Springer, New York, 1982. Zbl 0475.28009, MR 0648108, 10.1007/978-1-4612-5775-2 |
. |