Article
Keywords:
Hardy inequality; modular inequality; weight functions
Summary:
If $P$ is the Hardy averaging operator - or some of its generalizations, then weighted modular inequalities of the form
\int u \phi(Pf) \leq C\int v \phi(f)
are established for a general class of functions $\phi$. Modular inequalities for the two- and higher dimensional Hardy averaging operator are also given.
References:
                        
[1] Maria J. Carro, Hans Heinig: 
Modular inequalities for the Calderón operator. Tohoku Math. J. To appear. 
MR 1740541[2] M. DeGuzmán: Real Variable Methods in Fourier analysis. Univ. Complutense de Madrid, Fac. Mat., 1977.
[3] P. Drábek H. P. Heinig A. Kufner: 
Higher dimensional Hardy inequality. Internat. Ser. Numer. Math. 123 (1997), 3-16. 
MR 1457264[4] G. H. Hardy J. E. Littlewood G. Pólya: 
Inequalities. Cambridge, 1934. 
MR 0046395[5] H. P. Heinig R. Kerman M. Krbec: 
Weighted exponential inequalities. Preprint, vol. 79, Math. Inst., Acad. Science, Praha, 1992, pp. 30. 
MR 1828685[6] Hans P. Heinig, Qinsheng Lai: 
Weighted modular inequalities for Hardy-type operators on monotone functions. Preprint. 
MR 1756661[7] Qinsheng Lai: 
Weighted modular inequalities for Hardy-type operators. J. London Math. Soc. To appear. 
MR 1710168[9] B. Opic A. Kufner: 
Hardy type inequalities. Pitman Series 219, Harlow, 1990. 
MR 1069756