Previous |  Up |  Next

Article

Title: Sequential convergences in a vector lattice (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 1
Year: 1998
Pages: 33-48
Summary lang: English
.
Category: math
.
Summary: In the present paper we deal with sequential convergences on a vector lattice $L$ which are compatible with the structure of $L$. (English)
Keyword: vector lattice
Keyword: sequential convergence
Keyword: archimedean property
Keyword: Brouwerian lattice
MSC: 46A19
MSC: 46A40
idZBL: Zbl 0903.46009
idMR: MR1618711
DOI: 10.21136/MB.1998.126295
.
Date available: 2009-09-24T21:29:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126295
.
Reference: [1] G. Birkhoff: Lattice Theory.Third edition, Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] P. Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [3] M. Harminc: Sequential convergences on abelian lattice ordered groups.Convergence Structures, Proc. Conf. Bechyně 1984, Mathematical Research 24 (1985), 153-158. MR 0835480
Reference: [4] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group.Czechoslovak Math. J. 37 (1987), 533-546. MR 0913986
Reference: [5] M. Harminc: Sequential convergences on lattice ordered groups.Czechoslovak Math. J. 39 (1989), 232-238. MR 0992130
Reference: [6] M. Harminc J. Jakubík: Maximal convergences and minimal proper convergences in l-groups.Czechoslovak Math. J. 39 (1989), 631-640. MR 1017998
Reference: [7] J. Jakubík: Convergences and complete distributivity of lattice ordered groups.Math. Slovaca 38 (1988), 269-272. MR 0977905
Reference: [8] J. Jakubík: On summability in convergence l-groups.Časopis Pěst. Mat. 113 (1988), 286-292. MR 0960765
Reference: [9] J. Jakubík: On some types of kernels of a convergence l-group.Czechoslovak Math. J. 39 (1989), 239-247. MR 0992131
Reference: [10] J. Jakubík: Lattice ordered groups having a largest convergence.Czechoslovak Math. J. 39 (1989), 717-729. MR 1018008
Reference: [11] J. Jakubík: Sequential convergences in Boolean algebras.Czechoslovak Math. J. 38 (1988), 520-530. MR 0950306
Reference: [12] J. Jakubík: Convergences and higher degrees of distributivity in lattice ordered groups and Boolean algebras.Czechoslovak Math. J. 40 (1990), 453-458. MR 1065024
Reference: [13] L. V. Kantorovich B. Z. Vulikh A. G. Pinsker: Functional Analysis in Semiordered Spaces.Moskva, 1950. (In Russian.)
Reference: [14] S. Leader: Sequential convergence in lattice groups.In: Problems in analysis, Sympos. in Honor of S. Bochner. Princeton Univ. Press, 1970, pp. 273-290. Zbl 0212.03703, MR 0344842
Reference: [15] L. A. Ľusternik V. I. Sobolev: Elements of Functional Analysis.Moskva, 1951. (In Russian.)
Reference: [16] W. A. J. Luxemburg A. C. Zaanen: Riesz Spaces.Vol. 1. Amsterdam-London, 1971.
Reference: [17] P. Mikusiński: Problems posed at the conference.Proc. Conf. on Convergence, Szczyrk 1979. Katowice 1980, pp. 110-112. MR 0639325
Reference: [18] J. Novák: On convergence groups.Czechoslovak Math. J. 20 (1970), 357-374. MR 0263973
Reference: [19] B. Z. Vulikh: Introduction to the Theory of Semiordered Spaces.Moskva, 1961. (In Russian.)
.

Files

Files Size Format View
MathBohem_123-1998-1_3.pdf 894.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo