Title:
|
Radon-Nikodym derivatives in vector integration (English) |
Author:
|
Fernández, Fidel J. |
Author:
|
Jiménez Guerra, P. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
1996 |
Pages:
|
193-200 |
. |
Category:
|
math |
. |
MSC:
|
28B05 |
MSC:
|
46G10 |
idZBL:
|
Zbl 0871.28010 |
idMR:
|
MR1388609 |
DOI:
|
10.21136/CMJ.1996.127283 |
. |
Date available:
|
2009-09-24T09:55:28Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127283 |
. |
Reference:
|
[1] A. Balbás, P. Jiménez Guerra: A Radon-Nikodym theorem for a bilinear integral in locally convex spaces.Math. Japonica 32 (1987), no. , 863–870. MR 0927459 |
Reference:
|
[2] M$^a$. E. Ballvé, P. Jiménez Guerra: On the Radon-Nikodym theorem for operator valued measures.Simon Stevin 64 (1990), no. , 141–155. MR 1072488 |
Reference:
|
[3] R. Bravo, P. Jiménez Guerra: Linear operators and vector integrals.Math. Japonica 36 (1991), no. , 255–262. MR 1095738 |
Reference:
|
[4] J. Diestel, J. J. Uhl: Vector measures. Math. Surveys (15).Amer. Math. Soc., Providence, R. I., 1977. MR 0453964 |
Reference:
|
[5] I. Dobrakov: On integration in Banach spaces, I..Czech Math. J. 20 (1970), no. , 511–536. Zbl 0215.20103, MR 0365138 |
Reference:
|
[6] F. J. Fernández: Integración en espacios localmente convexos.Rev. Roum. Math. P. et Appl. 37 (1992), no. , 43–58. |
Reference:
|
[7] F. J. Fernández, P. Jiménez Guerra: On the Radon-Nikodym property for operator valued measures.P. Math. Hungarica 22 (1991), no. , 147–151. MR 1142504, 10.1007/BF01960504 |
Reference:
|
[8] P. Jiménez Guerra: Derivación de medidas e integración vectorial bilineal.Rev. R. Acad. Ci. Madrid 82 (1988), no. , 115–128. MR 0979065 |
Reference:
|
[9] H. B. Maynard: A Radon-Nikodym theorem for operator-valued measures.Trans. Amer. Math. Soc. 173 (1972), no. , 449–463. Zbl 0263.28008, MR 0310187 |
Reference:
|
[10] S. K. Roy, N. D. Chakraborty: Integration of vector valued functions with respect to an operator-valued measure.Czech. Math. J. 36 (1986), no. , 198–209. MR 0831308 |
. |