Previous |  Up |  Next

Article

Title: Uncomplementability of spaces of compact operators in larger spaces of operators (English)
Author: Emmanuele, G.
Author: John, K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 1
Year: 1997
Pages: 19-32
Summary lang: English
.
Category: math
.
Summary: In the first part of the paper we prove some new result improving all those already known about the equivalence of the nonexistence of a projection (of any norm) onto the space of compact operators and the containment of $c_0$ in the same space of compact operators. Then we show several results implying that the space of compact operators is uncomplemented by norm one projections in larger spaces of operators. The paper ends with a list of questions naturally rising from old results and the results in the paper. (English)
Keyword: spaces of linear and compact operators
Keyword: non existence of projections
Keyword: copies of $c_0$
Keyword: Approximation properties
Keyword: non existence of norm one projection
Keyword: Hahn-Banach extensions
MSC: 46A32
MSC: 46B03
MSC: 46B07
MSC: 46B20
MSC: 46B25
MSC: 46B28
MSC: 46B99
MSC: 46H10
MSC: 47D15
idZBL: Zbl 0903.46006
idMR: MR1435603
.
Date available: 2009-09-24T10:02:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127336
.
Reference: [BD] J. Bourgain, F. Delbaen: A class of special ${\mathcal L}_\infty $ spaces.Acta Math. 145 (1980), 155–176. MR 0590288, 10.1007/BF02414188
Reference: [B] R. D. Bourgin: Geometric aspects of convex sets with the Radon-Nikodym property LNM 993.Springer Verlag, 1983. MR 0704815
Reference: [DU] J. Diestel, J. J. Uhl, jr.: Vector Measures.Math. Surveys 15, Amer. Math. Soc., 1977. MR 0453964
Reference: [DS] N. Dunford, J. T. Schwartz: Linear Operators, part I.Interscience, 1958.
Reference: [E1] G. Emmanuele: About certain isomorphic properties of Banach spaces in projective tensor products.Extracta Math. 5 (1) (1990), 23–25.
Reference: [E2] G. Emmanuele: Remarks on the uncomplemented subspace $W(E, F)$.J. Funct. Analysis 99 (1) (1991), 125–130. Zbl 0769.46006, MR 1120917, 10.1016/0022-1236(91)90055-A
Reference: [E3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Phil. Soc. 111 (1992), 331–335. MR 1142753, 10.1017/S0305004100075435
Reference: [E4] G. Emmanuele: About the position of $K_{w^\ast }(X^\ast , Y)$ inside $L_{w^\ast }(X^\ast , Y)$.Atti Seminario Matematico e Fisico di Modena, XLII (1994), 123–133. MR 1282327
Reference: [E5] G. Emmanuele: Answer to a question by M. Feder about $K(X, Y)$.Revista Mat. Universidad Complutense Madrid 6 (1993), 263–266. Zbl 0813.46013, MR 1269756
Reference: [F1] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), 196–205. Zbl 0411.46009, MR 0575060, 10.1215/ijm/1256047715
Reference: [F2] M. Feder: On the non-existence of a projection onto the spaces of compact operators.Canad. Math. Bull. 25 (1982), 78–81. MR 0657655, 10.4153/CMB-1982-011-0
Reference: [GKS] G. Godefroy, N. J. Kalton, P. D. Saphar: Unconditional ideals in Banach spaces.Studia Math. 104 (1) (1993), 13–59. MR 1208038
Reference: [J1] K. John: On the uncomplemented subspace $K(X, Y)$.Czechoslovak Math. Journal 42 (1992), 167–173. Zbl 0776.46016, MR 1152178
Reference: [J2] K. John: On the space $K(P, P^\ast )$ of compact operators on Pisier space $P$.Note di Matematica 72 (1992), 69–75. MR 1258564
Reference: [Jo] J. Johnson: Remarks on Banach spaces of compact operators.J. Funct. Analysis 32 (1979), 304–311. Zbl 0412.47024, MR 0538857, 10.1016/0022-1236(79)90042-9
Reference: [JRZ] W. B. Johnson, H. P. Rosenthal, M. Zippin: On bases, finite dimensional decompositions and weaker structures in Banach spaces.Israel J. Math. 9 (1971), 488–506. MR 0280983, 10.1007/BF02771464
Reference: [Ka1] N. J. Kalton: Spaces of compact operators.Math. Annalen 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [Ka2] N. J. Kalton: M-ideals of compact operators.Illinois J. Math. 37 (1) (1993), 147–169. Zbl 0824.46029, MR 1193134, 10.1215/ijm/1255987254
Reference: [Le] D. R. Lewis: Conditional weak compactness in certain inductive tensor products.Math. Annalen 201 (1973), 201–209. Zbl 0234.46069, MR 0326417, 10.1007/BF01427942
Reference: [Li1] Å. Lima: Uniqueness of Hahn-Banach extensions and lifting of linear dependence.Math. Scandinavica 53 (1983), 97–113. MR 0733942, 10.7146/math.scand.a-12019
Reference: [Li2] Å. Lima: The metric approximation property, norm one projections and intersection properties of balls.Israel J. Math (to appear). Zbl 0814.46016, MR 1244680
Reference: [LORW] Å. Lima, E. Oja, T. S. S. R. K. Rao, D. Werner: Geometry of operator spaces.Preprint 1993. MR 1297703
Reference: [LTI] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces EMG 92.Springer Verlag, 1977. MR 0500056
Reference: [LTII] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces EMG 97.Springer Verlag, 1979. MR 0540367
Reference: [NP] I. Namioka, R. R. Phelps: Banach spaces which are Asplund spaces.Duke Math. J. 42 (1975), 735–750. MR 0390721, 10.1215/S0012-7094-75-04261-1
Reference: [P] A. Pelczynski: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295
Reference: [Ru] W. Ruess: Duality and Geometry of spaces of compact operators.Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984. Zbl 0573.46007, MR 0761373
Reference: [Wi] G. Willis: The compact approximation property does not imply the approximation property.Studia Math. 103 (1) (1992), 99–108. Zbl 0814.46017, MR 1184105, 10.4064/sm-103-1-99-108
.

Files

Files Size Format View
CzechMathJ_47-1997-1_2.pdf 1.563Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo