Previous |  Up |  Next

Article

References:
[1] On the reducibility of polynomials over an algebraic number field modulo of a prime ideal. Časopis pěst. mat. fyz. 68 (1939), 112–127. (German)
[2] A contribution to the reducibility of a polynomial in the theory of congruences. Věstník Král. české spol. nauk 7 (1939), 1–9. (French)
[3] On the number of roots and irreducible factors of polynomials over a finite field. Časopis pěst. mat. fyz. 69 (1949), 128–146. (French)
[4] On a theorem of S. Lubelski. Časopis pěst. mat. fyz. 69 (1940), 147–150. (German)
[5] A contribution to the arithmetic of finite fields. Prírodovedecká príloha Technického obzoru slovenského I (1940), 75–82. (Slovak)
[6] A contribution to the theory of congruences. Prírodovedecká príloha Technického obzoru slovenského II (1941), 89–92, 95–100. (Slovak)
[7] A contribution to the theory of Galois‘s fields. Prírodovedecká príloha Technického obzoru slovenského III (1942), 1–4. (Slovak)
[8] Theory of semigroups. Sborník prác Prírodovedeckej fakulty Slovenskej univerzity VI, Bratislava, 1943, pp. 64. (Slovak)
[9] A hyperkomplex proof of the Jordan-Kronecker’s Principle of reduction. Časopis pěst. mat. fys. 71 (1946), 17–21. MR 0020077
[10] A contribution to the reducibility of binomial congruences. Časopis pěst. mat. fys. 71 (1946), 21–32. (Czech)
[11] On the extension of the Jordan-Kronecker’s Principle of reduction for inseparable polynomials. Časopis pěst. mat. fys. 73 (1947), 61–64. MR 0022839 | Zbl 0036.29902
[12] On Waring’s Problem for finite fields. Quart. J. Math., Oxford Ser. 19 (1948), 123–128. MR 0024941 | Zbl 0030.11302
[13] On generalization of Jordan-Kronecker’s Principle of reduction. Věstník Král. české spol. nauk 2 (1948), 1–29. MR 0026639
[14] On the equation $a_{1}x_{1}^{k}+a_{2}x_{2}^{k}\ldots +a_{k}x_{k}^{k}+b\,=\,0$ in finite fields. Quart. J. Math., Oxford Ser. 19 (1948), 160–164. MR 0026065
[15] A contribution to the theory of cyclic fields. Sborník prác SVŠT, Bratislava, 1948, pp. 7. (Slovak)
[16] On the reducibility of binomial congruences and the least bound of an integer belonging to a given exponent (mod $p$). Časopis pěst. mat. fys. 74 (1949), 1–17.
[17] On universal forms in finite fields. Časopis pěst. mat. fys. 75 (1950), 45–50. MR 0035306 | Zbl 0036.29203
[18] On the generalization of the notion of a group. Časopis pěst. mat. fys. 74 (1949), 95–113. (Slovak)
[19] On equations of the form $ c_{1}x_{1}^{k_1}+c_{2}x_{2}^{k_2}+\ldots +c_{s}x_{s}^{k_s}\,=\,c$ in finite fields. Časopis pěst. mat. fys. 74 (1949), 175–176. (Slovak)
[20] On the structure of finite semigroups without zeros. Czechoslovak Math. J. 1 (76) (1951), 51–65. (Russian)
[21] On the structure of simple semigroups without zero. Czechoslovak Math. J. 1 (76) (1951), 41–53. MR 0048428 | Zbl 0045.15608
[22] On semigroups having a kernel. Czechoslovak Math. J. 1 (76) (1951), 259–301. (Russian) MR 0051221
[23] On semigroups having a kernel. Czechoslovak Math. J. 1 (76) (1951), 229–264. MR 0051221
[24] On the theory of periodic semigroups. Czechoslovak Math. J. 3 (78) (1953), 7–21. (Russian)
[25] On maximal ideals in the theory of semigroups I. Czechoslovak Math. J. 3 (78) (1953), 139–153. (Russian) MR 0061591
[26] Maximal ideals and the structure of semigroups. Mat.-fyz. čas. Slovenskej akad. vied 3 (1953), 17–39. (Slovak) MR 0064784
[27] On maximal ideals in the theory of semigroups II. Czechoslovak Math. J. 3 (78) (1953), 365–383. (Russian) MR 0061592
[28] The theory of characters of commutative semigroups. Czechoslovak Math. J. 4 (79) (1954), 219–247. (Russian) MR 0069815 | Zbl 0059.02003
[29] Characters of commutative semigroups as class funcions. Czechoslovak Math. J. 4 (79) (1954), 291–295. (Russian) MR 0069816
[30] On a Galois conection in the theory of characters of semigroups. Czechoslovak Math. J. 4 (79) (1954), 296–313. (Russian) MR 0069817
[31] Characters of commutative semigroups. Proceedings of the International Congress of Mathematicians 1954, Vol. 1, Amsterdam, 1957, pp. 438.
[32] On Hausdorff bicompact semigroups. Czechoslovak Math. J. 5 (80) (1955), 1–23. (Russian) MR 0074769 | Zbl 0068.02301
[33] Topological semigroups with one-sided units. Czechoslovak Math. J. 5 (80) (1955), 153–163. (Russian) MR 0074771 | Zbl 0068.02402
[34] Characters of bicompact semigroups. Czechoslovak Math. J. 5 (80) (1955), 24–28. (Russian) MR 0074770
[35] A remark to the theory of bicompact semigroups. Mat.-fyz. čas. Slovenskej akad. vied 5 (1955), 86–89. (Slovak) MR 0077872
[36] On magnifying elements in the theory of semigroups. Doklady Akad. Nauk SSSR 102 (1955), no. 4, 697–698. (Russian) MR 0071710
[37] On a type of universal forms in discretely valued fields. Acta Sci. Math. (Szeged) XVII (1956), no. 1–2, 5–29. MR 0081918 | Zbl 0072.03504
[38] The theory of characters of commutative Hausdorff bicompact semigroups. Czechoslovak Math. J. 6 (81) (1956), 330–364. MR 0092098
[39] Once more on quadratic polynomials with prime values. Časopis pěst. mat. 81 (1956), 241–243 (with Ján Mařík). (Czech)
[40] On the reducibility of polynomials over a finite field. Quart J. Math., Oxford Ser. 7 (1956), 110–124. DOI 10.1093/qmath/7.1.110 | MR 0096679 | Zbl 0071.01703
[41] Semigroups satisfying some weakened forms of the cancellation laws. Mat.–fyz. čas. Slovenskej akad. vied 6 (1956), 149–158. (Slovak) MR 0091281
[42] On the existence of invariant measures on certain types of bicompact semigroups. Czechoslovak Math. J. 7 (82) (1957), 165–182. (Russian) MR 0089364
[43] On the structure of the semigroup of measures on finite semigroups. Czechoslovak Math. J. 7 (82) (1957), 358–373. MR 0095215
[44] An elementary semigroup theorem and congruence relation of Rédei. Acta Sci. Math. (Szeged) XIX (1958), no. 1–2, 1–4.
[45] On the multiplicative semigroup of conguence classes (mod $m$). Mat.–fyz. čas. Slovenskej akad. vied 8 (1958), 136–150 (with Bohumír Parízek). (Slovak) MR 0103938
[46] Remarks on compact semigroups. Colloq. Math. (Wroclaw) VI (1958), 265–270 (with Jan Los). MR 0100649 | Zbl 0086.02203
[47] On totally noncommutative semigroups. Mat.-fyz. čas. Slovenskej akad. vied 9 (1959), 92–100 (with Dorota Krajňáková). (Russian) MR 0123629
[48] On dual semigroups. Czechoslovak Math. J. 10 (85) (1960), 201–230. MR 0117294 | Zbl 0098.01602
[49] A theorem on normal semigroups. Czechoslovak Math. J. 10 (85) (1960), 197–200. MR 0116075 | Zbl 0098.01704
[50] Semigroups, in which every proper subideal is a group. Acta Sci. Math. (Szeged) XXI (1960), no. 3–4, 125–134. MR 0130922 | Zbl 0095.01406
[51] On a class of polynomials over a finite field. Mat.-fyz. čas. Slovenskej akad. vied 10 (1960), 68–80. (Russian) MR 0130245 | Zbl 0104.01603
[52] On the number of irreducible factors of a polynomial over a finite field. Czechoslovak Math. J. 11 (86) (1961), 213–225. (Russian) MR 0123558 | Zbl 0102.25303
[53] Semicharacters of the multiplicative semigroup of integers modulo $m$. Mat.-fyz. čas. Slovenskej akad. vied 11 (1961), 63–74 (with Bohumír Parízek). MR 0139682
[54] Subsemigroups of simple semigroups. Czechoslovak Math. J. 13 (88) (1963), 226–239. MR 0158014 | Zbl 0122.02402
[55] Probabilities on non-commutative semigroups. Czechoslovak Math. J. 13 (88) (1963), 372–426. MR 0160191 | Zbl 0137.35302
[56] Probability measures on non-commutative semigroups. General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Symposium held in Prague in September 1961, pp. 312–315. Zbl 0118.11601
[57] Cyclic matrices and algebraic equations over a finite field. Mat.-fyz. čas. Slovenskej akad. vied 12 (1962), 38–48 (with Kornélia Horáková). (Russian) MR 0159814 | Zbl 0108.01502
[58] A remark on algebraic equations over a finite field. Mat.-fyz. čas. Slovenskej akad. vied 12 (1962), 224–229. (Russian) MR 0157963
[59] Convolution semigroup of measures on compact non-commutative semigroups. Czechoslovak Math. J. 14 (89) (1964), 95–115. MR 0169969
[60] Product decomposition of idempotent measures on compact semigroups. Czechoslovak Math. J. 14 (89) (1964), 121–124. MR 0169970 | Zbl 0151.18902
[61] Homomorphisms of completely simple semigroups onto a group. Mat.-fyz. čas. Slovenskej akad.vied 12 (1962), 293–300. MR 0158942
[62] On a system of congruences. A remark on the preceding paper of J.Sedláček. Mat.-fyz. čas. Slovenskej akad. vied 13 (1963), 103–104. (Slovak) MR 0157931
[63] A semigroup treatment of some theorems on non-negative matrices. Czechoslovak Math. J. 15 (90) (1965), 212–229. MR 0175919 | Zbl 0232.20139
[64] On the structure of the semigroup of stochastic matrices. Publ. of the Math. Inst. Hungarian Acad. Vol. IX, Series A, Fasc. 3 (1965), 297–311. MR 0188337
[65] On powers of non-negative matrices. Mat.-fyz. časopis Slovenskej akad. vied 15 (1965), 215–228. MR 0191987 | Zbl 0158.28302
[66] A remark to the theory of non-negative matrices. Sibir. Math. J. 6 (1965), 207–211. (Russian) MR 0171791
[67] A new approach to some problems in the theory of non-negative matrices. Czechoslovak Math. J. 16 (91) (1966), 274–284. MR 0201452 | Zbl 0232.20140
[68] New kinds of theorems on non-negative matrices. Czechoslovak Math. J. 16 (91) (1966), 285–295. MR 0201453
[69] Some estimates in the theory of non-negative matrices. Czechoslovak Math. J. 17 (92) (1967), 399–407. MR 0217101 | Zbl 0159.32603
[70] A note on the structure of the semigroup of doubly-stochastic matrices. Mat. čas. 17 (1967), 308–316. MR 0241451 | Zbl 0157.04902
[71] On the index of imprimitivity of a non-negative matrix. Acta Sci. Math. (Szeged) 28 (1967), 185–189. MR 0214610 | Zbl 0232.15004
[72] Algebraic considerations on powers of stochastic matrices. Mat. čas. 18 (1968), 218–228. MR 0245605 | Zbl 0176.30506
[73] Prime ideals and maximal ideals in semigroups. Czechoslovak Math. J. 19 (94) (1969), 72–79. MR 0237680 | Zbl 0176.29503
[74] On the semigroup of binary relations on a finite set. Czechoslovak Math. J. 20 (95) (1970), 632–679. MR 0296190 | Zbl 0228.20034
[75] On a sharp estimate in the theory of binary relations on a finite set. Czechoslovak Math. J. 20 (95) (1970), 703–714. MR 0282862
[76] On idempotent relations on a finite set. Czechoslovak Math. J. 20 (95) (1970), 696–702. MR 0268047
[77] Any $0$-simple dual semigroup is completely $0$-simple. Semigroup Forum 2 (1971), 90–92. DOI 10.1007/BF02572281 | MR 0281819
[78] On the structure of dual semigroups. Czechoslovak Math. J. 21 (96) (1971), 461–483. MR 0292982 | Zbl 0232.20116
[79] The semigroup of fully indecomposable relations and Hall relations. Czechoslovak Math. J. 23 (98) (1973), 151–163. MR 0316612 | Zbl 0261.20057
[80] A note on small categories with zero. Acta Sci. Math. (Szeged) 35 (1973), 161–164. MR 0330334 | Zbl 0273.20048
[81] Summs of powers of binary relations. Mat. čas. 24 (1974), 161–171. (Russian) MR 0363909
[82] Circulant Boolean relation matrices. Czechoslovak Math. J. 24 (99) (1974), 252–253. MR 0348018 | Zbl 0329.20049
[83] The ideal structure of $C$-semigroups. Czechoslovak Math. J. 27 (102) (1977), 313–338. MR 0439961 | Zbl 0376.20038
[84] The semigroup of circulant Boolean matrices. Czechoslovak Math. J. 26 (101) (1976), 632–635 (with Kim H. Butler). MR 0430121 | Zbl 0347.20037
[85] A counting theorem in the semigroup of circulant Booleant matrices. Czechoslovak Math. J. 27 (102) (1977), 504–510. MR 0457603
[86] Semigroups containing maximal ideals. Math. Slovaca 28 (1978), 157–168. MR 0526854 | Zbl 0378.20047
[87] Intersections of maximal ideals in semigroups. Semigroup Forum 12 (1976), 367–372. DOI 10.1007/BF02195942 | MR 0414760 | Zbl 0337.20025
[88] A theorem on binary relations and infinite regular languages. Semigroup Forum 17 (1979), 307–316. DOI 10.1007/BF02194330 | MR 0532422 | Zbl 0425.20053
[89] The Euler-Fermat Theorem for the semigroup of circulant Boolean matrices. Czechoslovak Math. J. 30 (105) (1980), 135–141. MR 0565916 | Zbl 0443.20053
[90] Infinite products on doubly stochastic matrices. Acta Math. Univ. Comenian. 39 (1980), 131–150. MR 0619269
[91] The role of semigroups in the elementary theory of numbers. Math. Slovaca 31 (1981), 369–395. MR 0637966 | Zbl 0474.10002
[92] An unconventional problem in the elementary theory of numbers. Czechoslovak Math. J. 31 (106) (1981), 159–169. MR 0604122 | Zbl 0468.10002
[93] Extensions of Bauer’s identical congruences. Math. Slovaca 33 (1983), 209–224. MR 0699091 | Zbl 0519.10003
[94] Common consequents in directed graphs. Czechoslovak Math. J. 35 (110) (1985), 212–247. MR 0787126 | Zbl 0575.05041
[95] Fermat’s Theorem for matrices revisited. Math. Slovaca 35 (1985), 343–347. MR 0820630 | Zbl 0584.15007
[96] Right compositions of semigroups. Math. Slovaca 36 (1988), 3–14. MR 0832365
[97] A combinatorial problem arising in finite Markov chains. Math. Slovaca 36 (1986), 199–210. MR 0849711 | Zbl 0615.15006
[98] Semigroups with a universally minimal left ideal. Acta Sci. Math. (Szeged) 52 (1988), 21–28. Zbl 0662.20046
[99] Construction of normal bases in cyclic extensions of a field. Czechoslovak Math. J. 38 (113) (1988), 291–312. MR 0946299 | Zbl 0671.12006
[100] Irreducible polynomials over finite field with linearly independent roots. Math. Slovaca 38 (1988), 147–158. MR 0945368
[101] Powers of subsets of finite semigroups. Semigroup Forum 51 (1995), 1–22. DOI 10.1007/BF02573616 | MR 1336994
[102] Universal formulae of Euler-Fermat type for subsets of $Z_m$. Collect. Math. 46 (1995), no. 1–2, 183–193. MR 1366140
[103] An explicit description of the set of all normal bases generators of a finite fields. Submitted to Czech. Math. J., pp. 13 (with Karol Nemoga).
[104] On equations. 1st ed., Prague, 1940, pp. 96. (Czech)
[105] On equations. 3rd ed., Prague, 1947, pp. 160. (Czech)
[106] Algebraic numbers. Přírodovědecké nakl., Prague, 1950, pp. 292. (Slovak) Zbl 0041.01105
[107] The theory of solutions of equations. Nakl. ČSAV, Prague, 1958, pp. 348. (Slovak)
[108] The theory of solutions of equations. Vydavateľstvo SAV, 1st ed., Bratislava, 1967, pp. 440.
Partner of
EuDML logo