Article
Summary:
It is shown that for any Artinian modules $M$, $\dim M^{\vee }$ is the greatest integer $i$ such that ${\mbox{H}}^i_{\mathfrak m}(M^{\vee })\ne 0$.
References:
[1] A. Grothendick (notes by R. Hartshorne):
Local Cohomology. Lecture Notes in Math. 41, Springer Verlag, 1967.
MR 0224620
[2] H.-B. Foxby: A homological theory of complexes of modules. Preprint Series No. 19a & 19b, Dept. of Mathematics, Univ. Copenhagen, 1981.
[3] I.G. Macdonald:
Secondary representation of modules over a commutative ring. Symp. Math. XI (1973) 23–43.
MR 0342506 |
Zbl 0271.13001
[4] I. G. Macdonald and R. Y. Sharp:
An elementary proof of the non-vanishing of certain local cohomology modules. Quart. J. Math. (Oxford)(2) 23 (1970), 197–204.
DOI 10.1093/qmath/23.2.197 |
MR 0299598