Previous |  Up |  Next

Article

Summary:
The present paper deals with certain generating functions and recurrence relations for $q$-Laguerre polynomials through the use of the $T_{k,q,x}$-operator introduced in an earlier paper [7].
References:
[1] W. A. Al-salam: Operational representation for the Laguerre and Hermite polynomials. Duke Math. Journal 31 (1964), 127–142. MR 0159053
[2] W. A. Al-salam, L. Carlitz: Some orthogonal $q$-polynomials. Math. Nachr. 30 (1965), 47–61. DOI 10.1002/mana.19650300105 | MR 0197804
[3] W. Hahn: Beitrage zur Theorie der Heineschen Reihen, Die 24 Integrale der hypergeometrischen $q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation. Math. Nachr. 2 (1949), 340–379. DOI 10.1002/mana.19490020604 | MR 0035344
[4] M. A. Khan: Certain fractional $q$-integrals and $q$-derivatives. Nanta Mathematica 7 (1974), no. 1, 52–60. MR 0369630 | Zbl 0289.33009
[5] M. A. Khan: On $q$-Laguerre polynomials. Ganita 34 (1983), no. 1 and 2, 111–123. MR 0910619 | Zbl 0638.33006
[6] M. A. Khan: $q$-Analogue of certain operational formulae. Houston J. Math. 13 (1987), no. 1, pp. 75–82. MR 0884235
[7] M. A. Khan: On a calculus for the $T_{k,q,x}$-operator. Mathematica Balkanica, New series 6 (1992), fasc. 1, pp. 83–90. MR 1170732
[8] M. A. Khan: On some operational representations of $q$-polynomials. Czechoslovak Mathematical Journal 45 (1995), 457–464. MR 1344511 | Zbl 0836.33009
[9] M. A. Khan, A. H. Khan: On some characterizations of $q$-Bessel polynomials. Acta Math. Viet. 15 (1990), no. 1, pp. 55–59. MR 1087787
[10] H. B. Mittal: Some generating functions. Univ. Lisbova Revista Fae. Ci A(2). Mat. 13 (1970), 43–51. MR 0308486 | Zbl 0229.33015
[11] E. D. Rainville: Special Functions. The MacMillan Co., New York (1960). MR 0107725 | Zbl 0092.06503
[12] L. J. Slater: Generalized Hypergeometric Functions. Cambridge University Press (1966). MR 0201688 | Zbl 0135.28101
[13] H. M. Srivastava, H. L. Manocha: A Treatise on Generating Functions. John Wiley and Sons (Halsted Press), New York, Ellis Horwood, Chichester, 1985. MR 0750112
Partner of
EuDML logo