Previous |  Up |  Next

Article

Title: Sixty years of professor František Neuman (English)
Author: Došlý, Ondřej
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 1
Year: 1998
Pages: 177-183
Summary lang: English
.
Category: math
.
Keyword: news and notices
MSC: 01A65
MSC: 01A70
idZBL: Zbl 0930.01023
idMR: MR1614033
.
Date available: 2009-09-24T10:12:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127408
.
Reference: [E] U. Elias: Oscillation Theory of Two-Term Linear Differential Equations.Kluwer Academic Publishers, Dordrecht, 1996.
Reference: [M1] : Functional Equations.SNTL, Praha, 1986, pp. 104. (Czech) Zbl 0922.34047
Reference: [M2] : Global Properties of Linear Ordinary Differential Equations.Mathematics and Its Applications, East European Series 52, Kluwer Academic Publishers (with Academia Praha), Dordrecht, 1991, pp. 334. Zbl 0784.34009, MR 1192133
Reference: [1] : Sur les équations différentielles linéaires du second ordre dont les solutions ont des racines formant une suite convexe.Acta Math. Acad. Sci. Hungar. 13 (1962), 281–287. Zbl 0117.30303, MR 0148999, 10.1007/BF02020794
Reference: [2] : On a certain ordering of the vertices of a tree.Časopis Pěst. Mat. 89 (1964), 323–339. Zbl 0131.20901, MR 0181587
Reference: [3] : Sur les équations différentielles linéaires oscillatoires du deuxième ordre avec la dispersion fondamentale $\phi (t) = t + \pi $.Bull. Polyt. Inst. Jassy 10 (14) (1964), 37–42. MR 0197825
Reference: [4] : (with M. Sekanina) Equivalent systems of sets and homeomorphic topologies.Czechoslovak Math. J. 15 (1965), 323–328. MR 0179087
Reference: [5] : Construction of second-order linear differential equations with solutions of prescribed properties.Arch. Math. (Brno) 1 (1965), 229–246. Zbl 0199.13802, MR 0199468
Reference: [6] : On ordering vertices of infinite trees.Časopis Pěst. Mat. 91 (1966), 170–177. Zbl 0136.44801, MR 0200198
Reference: [7] : Note on the second phase of the differential equation $ y^{\prime \prime } = q(t)y$.Arch. Math. (Brno) 2 (1966), 56–62. Zbl 0217.40201, MR 0203127
Reference: [8] : Criterion of periodicity of solutions of a certain differential equation with a periodic coefficient.Ann. Mat. Pura Appl. 75 (1967), 385–396. Zbl 0148.07104, MR 0213652, 10.1007/BF02416811
Reference: [9] : Extremal property of the equation $y^{\prime \prime } = k^2 y$.Arch. Math. (Brno) 3 (1967), 161–164. Zbl 0217.40202, MR 0236465
Reference: [10] : Relation between the distribution of the zeros of the solutions of a 2nd order linear differential equation and the boundedness of these solutions.Acta Math. Acad. Sci. Hungar. 19 (1968), 1–6. Zbl 0162.12304, MR 0228750, 10.1007/BF01894675
Reference: [11] : Centroaffine invariants of plane curves in connection with the theory of the secondorder linear differential equations.Arch. Math. (Brno) 4 (1968), 201–216. MR 0267512
Reference: [12] : Note on a bounded non-periodic solutions of the second-order linear differential equations with periodic coefficients.Math. Nachrichten 39 (1969), 217–222. MR 0247193, 10.1002/mana.19690390403
Reference: [13] : On bounded solutions of a certain differential equation. Proceedings of the Conference on Differential Equations and Their Applications Equadiff 2 Bratislava 1966.Acta Fac. Rerum Natur. Univ. Comenian. Math. 17 (1969), 213–215.
Reference: [14] : On the coexistence of periodic solutions.J. Differential Equations 8 (1970), 277–282. Zbl 0208.10903, MR 0264168, 10.1016/0022-0396(70)90007-0
Reference: [15] : An explicit form of the differential equation $y^{\prime \prime } = q(t)y$ with periodic solutions.Ann. Mat. Pura Appl. 85 (1970), 295–300. MR 0262610, 10.1007/BF02413540
Reference: [16] : On the Liouville transformation.Rend. Mat. 3 (1970), 133–140. Zbl 0241.34005, MR 0273090
Reference: [17] : A note on differential equations with periodic solutions.Arch. Math. (Brno) 6 (1970), 189–192. Zbl 0241.34028, MR 0320411
Reference: [18] : Construction of differential equations with coexisting periodic solutions.Bull. Polyt. Inst. Jassy 14 (20) (1970), 67–75. Zbl 0267.34039, MR 0283305
Reference: [19] : Note on Kummer’s transformation.Arch. Math. (Brno) 6 (1970), 185–188. MR 0294748
Reference: [20] : Closed plane curves and differential equations.Rend. Mat. 3 (1970), 423–433. Zbl 0235.53003, MR 0275284
Reference: [21] : Periodic curvatures and closed curves.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48 (1970), 494–498. Zbl 0201.23703, MR 0298572
Reference: [22] : Some results concerning Abel’s equation in the theory of differential equations and consequences for the affine geometry of closed plane curves.Aequationes Math. 4 (1970), 282–284. MR 1553787, 10.1007/BF01817786
Reference: [23] : (with F. M. Arscott and M. Greguš) Three-point boundary value problems in differential equations.J. London Math. Soc. (2) 3 (1971), 429–436. MR 0283282
Reference: [24] : A role of Abel’s equation in the stability theory of differential equations.Aequationes Math. 6 (1971), 66–70. Zbl 0215.43803, MR 0299899, 10.1007/BF01833239
Reference: [25] : $L^2$-solutions of $y^{\prime \prime } = q(t)y$ and a functional equation.Aequationes Math. 6 (1971), 162–169. Zbl 0389.41013, MR 0291562, 10.1007/BF01819748
Reference: [26] : Linear differential equations of the second order and their applications.Rend. Mat. 4 (1971), 559–617. Zbl 0227.34005, MR 0311972
Reference: [27] : Some results on geometrical approach to linear differential equations of the $n$-th order.Comment. Math. Univ. Carolin. 12 (1971), 307–315. Zbl 0217.12001, MR 0288337
Reference: [28] : A note on Santaló’s isoperimetric theorem.Revista Mat. Fis. Teor. Tucuman 21 (1971), 203–206. Zbl 0278.52004, MR 0339033
Reference: [29] : Geometrical approach to linear differential equations of the $n$-th order.Rend. Mat. 5 (1972), 579–602. Zbl 0257.34029, MR 0324141
Reference: [30] : Oscillation in linear differential equations.Proceedings of the Conference Equadiff 3, J. E. Purkyně University, Brno, 1972, pp. 119–125. MR 0350114
Reference: [31] : Distribution of zeros of solutions of $y^{\prime \prime }=q(t) y$ in relation to their behaviour in large.Studia Sci. Math. Hungar. 8 (1973), 177–185. Zbl 0286.34050, MR 0333344
Reference: [32] : On $n$-dimensional closed curves and periodic solutions of linear differential equations of the $n$-th order.Demonstratio Mat. 6 (1973), 329–337. Zbl 0286.34063, MR 0364757
Reference: [33] : On a problem of transformations between limit-circle and limit-point differential equations.Proc. Roy. Soc. Edinburgh Sect. A 72 (1973/74), 187–193. MR 0385226
Reference: [34] : On two problems about oscillation of linear differential equations of the third order.J. Differential Equations 15 (1974), 589–596. MR 0342769, 10.1016/0022-0396(74)90075-8
Reference: [35] : Global transformation of linear differential equations of the $n$-th order.Knižnice odb. a věd. spisů VUT Brno B-56 (1975), 165–171.
Reference: [36] : On solutions of the vector functional equation $y(\xi (x))=f(x)\cdot A \cdot y(x)$.Aequationes Math. 16 (1977), 245–257. Zbl 0375.34013, MR 0467061, 10.1007/BF01836037
Reference: [37] : (with J. Vosmanský) On functions (sequences) the derivatives (differences) of which are of constant sign.Doklady Ak. Nauk Azer. SSR 34 (1978), 8–12. (Russian)
Reference: [38] : (with S. Staněk) On the structure of second-order periodic differential equations with given characteristic multipliers.Arch. Math. (Brno) 13 (1977), 149–157. MR 0460790
Reference: [39] : Linear differential equations with periodic coefficients in the critical case.An. Sti. Univ. Al. I. Cuza Jassy Sect. I a Mat. 23 (1977), 325–328. Zbl 0373.34020, MR 0486816
Reference: [40] : Categorial approach to global transformations of the $n$-th order linear differential equations.Časopis Pěst. Mat. 1977 102, 350–355. Zbl 0374.34028, MR 0477284
Reference: [41] : Limit circle classification and boundnedness of solutions.Proc. Roy. Soc. Edinburgh 81 A (1978), 31–34. MR 0529374
Reference: [42] : Global properties of the $n$-th order linear differential equations.Proceedings of Equadiff  4 Praha 1977, Lecture Notes in Mathematics 703, Springer, Berlin, 1979, pp. 309–319. MR 0535351
Reference: [43] : Invariants of third order linear differential equations and Cartan’s moving frame method.Differencial’nyje Uravnenija 14 (1979), 398–404. (Russian)
Reference: [44] : A generalization of Floquet theory.Acta Math. Univ. Comenian. 39 (1980), 53–59. Zbl 0517.34035, MR 0619262
Reference: [45] : Transformations of linear differential equations of the $n$-th order.Sborník 6. vědecké konference Vysoké školy dopravní v Žilině Sept. 1979, VŠD Žilina, 1979, pp. 11–19. (Russian)
Reference: [46] : On transformations of differential equations and systems with deviating argument.Czechoslovak Math. J. 31 (1981), 87–90. Zbl 0463.34051, MR 0604115
Reference: [47] : Global theory of linear differential equations of the $n$-th order.Proceedings of the Colloquium on Qualitative Theory of Differential Equations Szeged-Hungary August 1979, Ser. Coll. Math. Soc. J. Bolyai, North-Holland Publ. Co., 1981, pp. 777–793. Zbl 0484.34022, MR 0680619
Reference: [48] : Second order linear differential systems.Ann. Sci. École Norm. Super. (Paris) 13 (1980), 437–449. Zbl 0453.34006, MR 0608288, 10.24033/asens.1391
Reference: [49] : Functions of two variables and matrices involving factorizations.C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 7–11. Zbl 0449.15009, MR 0608675
Reference: [50] : Factorizations of matrices and functions of two variables.Czechoslovak Math. J. 32 (1982), 582–588. Zbl 0517.15012, MR 0682133
Reference: [51] : Functions of the form $_{i=1}^N f_i (x)g_i(t)$ in $L_2$.Arch. Math. (Brno) 18 (1982), 19–22.
Reference: [52] : Simultaneous solutions of a system of Abel equations and differential equations with several deviations.Czechoslovak Math. J. 32 (1982), 488–494. Zbl 0524.34070, MR 0669790
Reference: [53] : Global canonical forms of linear differential equations.Math. Slovaca 33 (1983), 389–394. Zbl 0527.34036, MR 0720509
Reference: [54] : Linear differential equations—global theory.Proceedings of Equadiff 5 Bratislava 1981, Teubner-Texte zur Mathematik, Leipzig, 1982, pp. 272–275. Zbl 0519.34004, MR 0715934
Reference: [55] : Theory of global properties of ordinary differential equations of the $n$-th order.Differencial’nyje Uravnenija 19 (1983), 799–808. (Russian) MR 0703421
Reference: [56] : A survey of global properties of linear differential equations of the $n$-th order.Proceedings of the Conference on Ordinary and Partial Differential Equations, Dundee 1982, Lecture Notes in Mathematics 964, Springer, Berlin, pp. 548–563. Zbl 0501.34003, MR 0693139
Reference: [57] : (with W. N. Everitt) A concept of adjointness and symmetry of differential expressions based on the generalized Lagrange identity and Green’s formula.Proceedings: Ordinary Differential Equations and Operators, Dundee 1982, Lecture Notes in Mathematics 1032, Springer, Berlin, pp. 161–169. MR 0742639
Reference: [58] : From local to global investigations of linear differential equations of the $n$-th order.Jahrbuch Überblicke Mathematik 1984, 55–80. Zbl 0548.34009
Reference: [59] : Criterion of global equivalence of linear differential equations.Proc. Roy. Soc. Edinburgh 97 A (1984), 217–221. Zbl 0552.34009, MR 0751194
Reference: [60] : Stationary groups of linear differential equations.Czechoslovak Math. J. 34 (1984), 645–663. Zbl 0573.34028, MR 0764446
Reference: [61] : A vector functional equation and linear differential equations.Aequationes Math. 29 (1985), 19–23. Zbl 0593.39006, MR 0812301
Reference: [62] : A note on smoothness of the Stäckel transformation.Prace Mat. WSP (Kraków) 11 (1985), 147–151.
Reference: [63] : Covariant constructions in the theory of linear differential equations.Časopis Pěst. Mat. 111 (1986)), 201–207. Zbl 0597.34005, MR 0847318
Reference: [64] : Global theory of ordinary linear homogeneous differential equations in the real domain I, II.Aequationes Math. 33 (1987), 123–149. MR 0911150, 10.1007/BF01836159
Reference: [65] : Solution to the Problem No. 10 of N. Kamran.Proceedings of the 23rd Intern. Symp. on Functional Equations Gargnano-Italy 1985, Univ. of Waterloo, Ont. Canada, pp. 60–62.
Reference: [66] : Ordinary linear differential equations—a survey of the global theory.Proceedings of Equadiff 6 Brno 1986, Lecture Notes in Mathematics 1192, Springer, Berlin, pp. 59–70. Zbl 0633.34008, MR 0877107
Reference: [67] : Oscillatory behavior of iterative linear ordinary differential equations depends on their order.Arch. Math. (Brno) 22 (1986), 187–192. Zbl 0608.34036, MR 0868533
Reference: [68] : On iteration groups of certain functions.Arch. Math. (Brno) 25 (1989), 185–194. Zbl 0721.39002, MR 1188063
Reference: [69] : Another proof of Borůvka’s criterion on global equivalence of the second order ordinary linear differential equations.Časopis Pěst. Mat. 115 (1990), 73–80. Zbl 0714.34055, MR 1044016
Reference: [70] : Smoothness as an invariant property of coefficients of linear differential equations.Czechoslovak Math. J. 39 (1989), 513–521. Zbl 0702.34034, MR 1006317
Reference: [71] : On a canonical parametrization of continuous functions.Opuscula Math. (Kraków) 1335 (1990)), 185–191. Zbl 0779.39002, MR 1120254
Reference: [72] : On Halphen and Laguerre-Forsyth canonical forms of linear differential equations.Arch. Math. (Brno) 26 (1990), 147–154. Zbl 0729.34008, MR 1188274
Reference: [73] : Transformations and canonical forms of functional-differential equations.Proc. Roy. Soc. Edinburgh 115 A (1990), 349–357. MR 1069527
Reference: [74] : Finite sums of products of functions in single variables.Linear Algebra Appl. 134 (1990), 153–164. Zbl 0714.26007, MR 1060018, 10.1016/0024-3795(90)90014-4
Reference: [75] : (with Th. M. Rassias) Functions decomposable into finite sums of products.Constantin Carathéodory—An International Tribute, Vol. II, World Scientific Publ. Co., Singapore, 1991, pp. 956–963.
Reference: [76] : Ordered groups commuting matrices and iterations of functions in transformations of differential equations.Constantin Carathéodory—An International Tribute, Vol. II, World Scientific Publ. Co., Singapore, 1991, pp. 942–955. Zbl 0737.34023, MR 1130872
Reference: [77] : (with Á. Elbert and J. Vosmanský) Principal pairs of solutions of linear second order oscillatory differential equations.Differential Integral Equations 5 (1992), 945–960. MR 1167505
Reference: [78] : On transformation of quasilinear differential equations to canonical forms.Recent Trends in Ordinary Differential Equations Vol. I, World Scientific Series in Applicable Analysis World Sci., Singapore, 1992, pp. 457–461. Zbl 0832.34026, MR 1180130
Reference: [79] : On the $n$-th order iterative linear ordinary differential equations.Aequationes Math. 46 (1993), 38–43. MR 1220720, 10.1007/BF01833996
Reference: [80] : (with Á. Elbert) Exceptional solutions of Hill equations.J. Differential Equations 116 (1995), 419–430. MR 1318581, 10.1006/jdeq.1995.1041
Reference: [81] : Limit behavior of ordinary linear differential equations.Proceedings of Georgian Academy of Sciences Mathematics 1 (1993), 355–364. MR 1262570
Reference: [82] : (with M. Muldoon) Principal pairs for oscillatory second order linear differential equations.Dynamical Systems and Applications, World Scientific Series in Applicable Analysis World Sci. Vol. 4, Singapore, 1995, pp. 517–526. MR 1372981
Reference: [83] : On equivalence of linear functional-differential equations.Results in Mathematics 26 (1994), 354–359. Zbl 0829.34054, MR 1300618, 10.1007/BF03323059
Reference: [84] : Nonextendable classes of linear differential equations.J. Nonlinear Anal. 25 (1995), 1045–1049. Zbl 0843.34012, MR 1350726, 10.1016/0362-546X(95)00098-G
Reference: [85] : Solutions of Abel’s equation in relation to asymptotic behaviour of linear differential equations.Aequationes Math, Accepted.
Reference: [86] : Transformation theory of linear ordinary differential equations—from local to global investigations.Archivum Math. (Brno) 33 (1997), 65–74. Zbl 0914.34012, MR 1464302
Reference: [87] : Dispersions for linear differential equations of arbitrary order.Archivum Math. (Brno) 33 (1997), 147–155. Zbl 0914.34010, MR 1464309
Reference: [88] : Asymptotic behaviour and zeros of solutions on $n$-th order linear differential equations.8Submitted.
.

Files

Files Size Format View
CzechMathJ_48-1998-1_15.pdf 689.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo