Previous |  Up |  Next

Article

Title: Singular Dirichlet boundary value problems. II: Resonance case (English)
Author: O'Regan, Donal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 2
Year: 1998
Pages: 269-289
Summary lang: English
.
Category: math
.
Summary: Existence results are established for the resonant problem $y^{\prime \prime }+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_{{\mathrm loc}}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm{d}x <\infty $. (English)
MSC: 34B15
MSC: 34L30
idZBL: Zbl 0957.34016
idMR: MR1624319
.
Date available: 2009-09-24T10:13:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127416
.
Reference: [1] Atkinson, F.V.: Discrete and continuous boundary problems.(1964), Academic Press, New York. Zbl 0117.05806, MR 0176141
Reference: [2] Bobisud, L.E., and O’Regan, D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance.Jour. Math. Anal. Appl. 184 (1994), 263–284. MR 1278388, 10.1006/jmaa.1994.1199
Reference: [3] Bobisud, L.E., O’Regan, D., and Royalty, W.D.: Singular boundary value problems.Appl. Anal. 23 (1986), 233–243. MR 0870490, 10.1080/00036818608839643
Reference: [4] Everitt, W.N., Kwong, M.K., and Zettl, A.: Oscillations of eigenfunctions of weighted regular Sturm Liouville problems.J. London Math. Soc. 27 (1983), 106–120. MR 0686509, 10.1112/jlms/s2-27.1.106
Reference: [5] Habets, P., and Zanolin, F.: Upper and lower solutions for a generalized Emden-Fowler equation.J. Math. Anal. Appl. 181 (1994), 684–700. MR 1264540, 10.1006/jmaa.1994.1052
Reference: [6] Iannacci, R., and Nkashama, M.N.: Unbounded perturbations of forced second order ordinary differential equations at resonance.Jour. Diff. Eq. 69 (1987), 289–309. MR 0903389, 10.1016/0022-0396(87)90121-5
Reference: [7] Mawhin, J.: Topological degree methods in nonlinear boundary value problems.AMS Regional Conf. Series in Math. 40, Providence, 1978. MR 0525202
Reference: [8] Mawhin, J., and Ward, J.R.: Nonuniform nonresonance conditions at the first two eigenvalues for periodic solutions of forced Liénard and Duffing equations.Rocky M.J. Math. 112 (1982), 643–654. 10.1216/RMJ-1982-12-4-643
Reference: [9] Naimark, M.A.: Linear differential operators, Part II.Ungar Publ. Co., London, 1968. Zbl 0227.34020, MR 0262880
Reference: [10] O’Regan, D.: Theory of singular boundary value problems.World Scientific Press, Singapore, 1994.
Reference: [11] O’Regan, D.: Existence principles and theory for singular Dirichlet boundary value problems.Diff. Eqms. and Dynamical Systems 3 (1995), 289–304. MR 1386750
Reference: [12] O’Regan, D.: Singular Dirichlet boundary value problems I: Superlinear and nonresonance case.Nonlinear Analysis 29 (1997), 221–245. MR 1446226, 10.1016/S0362-546X(96)00026-0
.

Files

Files Size Format View
CzechMathJ_48-1998-2_6.pdf 398.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo