Previous |  Up |  Next

Article

Title: On the extension of $D$-poset valued measures (English)
Author: Riečan, Beloslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 3
Year: 1998
Pages: 385-394
Summary lang: English
.
Category: math
.
Summary: A variant of Alexandrov theorem is proved stating that a compact, subadditive $D$-poset valued mapping is continuous. Then the measure extension theorem is proved for MV-algebra valued measures. (English)
Keyword: $D$-posets
Keyword: extension of measures
Keyword: observables in quantum mechanics
MSC: 28B15
MSC: 28E10
idZBL: Zbl 0953.28015
idMR: MR1637914
.
Date available: 2009-09-24T10:14:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127426
.
Reference: [1] Birkhoff, G.: Lattice theory.Providence (1967). Zbl 0153.02501, MR 0227053
Reference: [2] Chang, C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [3] Chovanec, F.: States and observables on MV algebras.Tatra Mountains Math. Publ. 3 (1993), 55–63. Zbl 0799.03074, MR 1278519
Reference: [4] Chovanec, F., Jurečková, M.: Law of large numbers on $D$-posets of fuzzy sets.Tatra Mountains Math. Publ. 1 (1992), 15–18. MR 1230457
Reference: [5] Chovanec, F., Kôpka, F.: On a representation of observables in $D$-posets of fuzzy sets.Tatra Mountains Math. Publ. 1 (1992), 19–24. MR 1230458
Reference: [6] Dvurečenskij, A., Pulmannová, S.: Difference posets, effects and quantum measurements.Int. J. Theor. Phys. 33 (1994), 819–850. MR 1286161, 10.1007/BF00672820
Reference: [7] Dvurečenskij, A., Riečan, B.: Decomposition of measures on orthoalgebras and difference posets.Int. J. Theor. Phys. 33 (1994), 1403–1418. 10.1007/BF00670684
Reference: [8] Foulis, D. J., Greechie, R. J., Rüttimann, G. T.: Filters and supports in orthoalgebras.Int. J. Theor. Physics 31 (1992), 789–807. MR 1162623, 10.1007/BF00678545
Reference: [9] Giuntini, R., Greling, H.: Toward a formal language for unsharp properties.Foundations of Physics 20 (1989), 931–945. MR 1013913, 10.1007/BF01889307
Reference: [10] Jakubík, J.: On complete MV-algebras.Czechoslovak Math. J. 45 (1995), 473–480. MR 1344513
Reference: [11] Jurečková, M.: The measure extension theorem on MV $\sigma $-algebras.Tatra Mountains Math. Publ. 6 (1995), 55–61. MR 1363983
Reference: [12] Kôpka, F., Chovanec, F.: $D$-posets.Math. Slovaca 44 (1994), 21–34. MR 1290269
Reference: [13] Mesiar, R.: Fuzzy difference posets and MV-algebras.Proc. IPMU 94, Paris 1994, B. Bouchon–Meunier and R. R. Jager (eds.), 1994, 208–212.
Reference: [14] Mundici, D.: Interpretation of $AFC^\ast $-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [15] Riečan, B.: On the lattice group valued measures.Čas. pěst. mat. 101 (1976), 343–349. MR 0499072
Reference: [16] Riečan, B.: On measures and integrals with values in ordered groups.Math. Slovaca 33 (1983), 153–163. MR 0699085
Reference: [17] Riečan, B.: On the convergence of observables in $D$-posets.Tatra Mountains Math. Publ. 12 (1997), 7–12. MR 1607147
Reference: [18] Volauf, P.: On various notions of regularity in ordered spaces.Math. Slovaca 35 (1985), 127–130. Zbl 0597.28017, MR 0795006
Reference: [19] Volauf, P.: Alexandroff and Kolmogorov consistency theorem for measures with values in partially ordered groups.Tatra Mountains Math. Publ. 3 (1993), 237–244. MR 1278538
Reference: [20] Vonkomerová, M., Vrábelová, M.: On the extension of positive continuous operators.Math. Slovaca 31 (1981), 251–262. MR 0621916
Reference: [21] Wright, J. D. M.: The measure extension problem for vector lattices.Ann. Inst. Fourier Grenoble 21 (1971), 65–85. Zbl 0215.48101, MR 0330411, 10.5802/aif.393
.

Files

Files Size Format View
CzechMathJ_48-1998-3_1.pdf 330.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo