Previous |  Up |  Next

Article

Title: Solution of the Neumann problem for the Laplace equation (English)
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 4
Year: 1998
Pages: 763-784
Summary lang: English
.
Category: math
.
Summary: For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series. (English)
Keyword: single layer potential
Keyword: generalized normal derivative
MSC: 31B10
MSC: 35J05
MSC: 35J10
MSC: 35J25
idZBL: Zbl 0949.31004
idMR: MR1658269
.
Date available: 2009-09-24T10:18:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127453
.
Reference: [1] R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
Reference: [2] Yu. D. Burago, V. G. Maz’ya: Potential theory and function theory for irregular regions.Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, 1969. MR 0240284
Reference: [3] H. Federer: Geometric Measure Theory.Springer-Verlag Berlin, Heidelberg, New York, 1969. Zbl 0176.00801, MR 0257325
Reference: [4] I. Gohberg, A. Marcus: Some remarks on topologically equivalent norms.Izvestija Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91–95.
Reference: [5] N. V. Grachev, V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19(4) (1986), 60–64. MR 0880678
Reference: [6] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
Reference: [7] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
Reference: [8] H. Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021
Reference: [9] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980, pp. . MR 0590244
Reference: [10] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Aplikace matematiky 31 (1986), 293–308. MR 0854323
Reference: [11] N. L. Landkof: Fundamentals of modern potential theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
Reference: [12] V. G. Maz’ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, 27.Viniti, Moskva, 1988. (Russian)
Reference: [13] D. Medková: On the convergence of Neumann series for noncompact operator.Czechoslovak Math. J. 41(116) (1991), 312–316. MR 1105448
Reference: [14] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslovak Math. J. 47(122) (1997), 651–680. MR 1479311, 10.1023/A:1022818618177
Reference: [15] I. Netuka: The third boundary value problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [16] I. Netuka: Smooth surfaces with infinite cyclic variation.Čas. pěst. mat. 96 (1971), 86–101. (Czech) Zbl 0204.08002, MR 0284553
Reference: [17] C. Neumann: Untersuchungen über das logarithmische und Newtonsche Potential.Teubner Verlag, Leipzig, 1877.
Reference: [18] C. Neumann: Zur Theorie des logarithmischen und des Newtonschen Potentials.Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig 22 (1870), 49–56, 264–321.
Reference: [19] C. Neumann: Über die Methode des arithmetischen Mittels.Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung).
Reference: [20] J. Plemelj: Potentialtheoretische Untersuchungen.B. G. Teubner, Leipzig, 1911.
Reference: [21] J. Radon: Über Randwertaufgaben beim logarithmischen Potential.Sitzber. Akad. Wiss. Wien 128 (1919), 1123–1167.
Reference: [22] J. Radon: ARRAY(0x9436470).Birkhäuser, Vienna, 1987.
Reference: [23] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron.The panel method. Applicable Analysis 45 (1992), 1–4, 135–177. MR 1293594, 10.1080/00036819208840093
Reference: [24] A. Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum.Applicable Analysis 56 (1995), 109–115. Zbl 0921.31004, MR 1378015, 10.1080/00036819508840313
Reference: [25] F. Riesz, B. Sz. Nagy: Leçons d’analyse fonctionnelles.Budapest, 1952.
Reference: [26] M. Schechter: Principles of Functional Analysis.Academic Press, 1973. MR 0445263
Reference: [27] L. Schwartz: Theorie des distributions.Hermann, Paris, 1950. Zbl 0037.07301, MR 0209834
Reference: [28] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_48-1998-4_14.pdf 426.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo