| Title: | On an extension of Fekete’s lemma (English) | 
| Author: | Chon, Inheung | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 49 | 
| Issue: | 1 | 
| Year: | 1999 | 
| Pages: | 63-66 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma. (English) | 
| MSC: | 15A15 | 
| idZBL: | Zbl 0954.15005 | 
| idMR: | MR1676845 | 
| . | 
| Date available: | 2009-09-24T10:19:53Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127467 | 
| . | 
| Reference: | [1] I. Chon: Lie group and control theory.Ph.D. Thesis, Louisiana State University, 1988. | 
| Reference: | [2] M. Fekete: Ueber ein Problem von Laguerre.Rendiconti del Circolo Matematico di Palermo 34 (1912), 92–93. | 
| Reference: | [3] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2.Chelsea Publ. Comp., New York, 1960. MR 1657129 | 
| Reference: | [4] S. Karlin: Total Positivity vol. 1.Stanford University Press, 1968. MR 0230102 | 
| Reference: | [5] C. Loewner: On totally positive matrices.Math. Zeitschr. 63 (1955), 338–340. Zbl 0068.25004, MR 0073657, 10.1007/BF01187945 | 
| Reference: | [6] G. Pólya and G. Szegö: Aufgaben and Lehrsätze aus der Analysis vol. 2.Springer-Velag, 1964. | 
| Reference: | [7] A. M. Whitney: A reduction theorem for totally positive matrices.J. d’Analyse Math. Jerusalem 2 (1952), 88–92. Zbl 0049.17104, MR 0053173, 10.1007/BF02786969 | 
| . |