Previous |  Up |  Next

Article

Title: On an extension of Fekete’s lemma (English)
Author: Chon, Inheung
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 1
Year: 1999
Pages: 63-66
Summary lang: English
.
Category: math
.
Summary: We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma. (English)
MSC: 15A15
idZBL: Zbl 0954.15005
idMR: MR1676845
.
Date available: 2009-09-24T10:19:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127467
.
Reference: [1] I. Chon: Lie group and control theory.Ph.D. Thesis, Louisiana State University, 1988.
Reference: [2] M. Fekete: Ueber ein Problem von Laguerre.Rendiconti del Circolo Matematico di Palermo 34 (1912), 92–93.
Reference: [3] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2.Chelsea Publ. Comp., New York, 1960. MR 1657129
Reference: [4] S. Karlin: Total Positivity vol. 1.Stanford University Press, 1968. MR 0230102
Reference: [5] C. Loewner: On totally positive matrices.Math. Zeitschr. 63 (1955), 338–340. Zbl 0068.25004, MR 0073657, 10.1007/BF01187945
Reference: [6] G. Pólya and G. Szegö: Aufgaben and Lehrsätze aus der Analysis vol. 2.Springer-Velag, 1964.
Reference: [7] A. M. Whitney: A reduction theorem for totally positive matrices.J. d’Analyse Math. Jerusalem 2 (1952), 88–92. Zbl 0049.17104, MR 0053173, 10.1007/BF02786969
.

Files

Files Size Format View
CzechMathJ_49-1999-1_7.pdf 281.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo