Previous |  Up |  Next

Article

Title: Weak orthogonality and weak property ($\beta $) in some Banach sequence spaces (English)
Author: Cui, Yunan
Author: Hudzik, Henryk
Author: Płuciennik, Ryszard
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 2
Year: 1999
Pages: 303-316
Summary lang: English
.
Category: math
.
Summary: It is proved that a Köthe sequence space is weakly orthogonal if and only if it is order continuous. Criteria for weak property (${\mathbf \beta }$) in Orlicz sequence spaces in the case of the Luxemburg norm as well as the Orlicz norm are given. (English)
Keyword: Köthe sequence space
Keyword: Orlicz sequence space
Keyword: weak orthogonality
Keyword: weak property (${\mathbf \beta }$)
MSC: 46A45
MSC: 46B10
MSC: 46B20
MSC: 46B45
MSC: 46E30
MSC: 46E40
idZBL: Zbl 0954.46004
idMR: MR1692465
.
Date available: 2009-09-24T10:22:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127489
.
Reference: [CS] S.T. Chen: Geometry of Orlicz Spaces.Dissertationes Math. 356 (1996), 1–204. Zbl 1089.46500, MR 1410390
Reference: [De] J. Diestel: Sequence and Series in Banach Spaces.(1984), Graduate Texts in Math. 92, Springer-Verlag. MR 0737004
Reference: [F] J. Garcia Falset: The fixed point property in Banach spaces whose characteristic of uniform convexity is less than 2.J. Austral Math. Soc. Ser. A 54 (1993), 169–173. Zbl 0783.47068, MR 1200790, 10.1017/S1446788700037095
Reference: [GH] R. Grzślewicz and H. Hudzik: Smooth points in Orlicz spaces equipped with Luxemburg norm.Math. Nachr. 44 (3) (1992), 505–515. MR 1231254
Reference: [H1] H. Hudzik: Uniformly non-$l_n^{(1)}$ Orlicz spaces with Luxemburg norm.Studia Math. 81.3 (1985), 271–284. MR 0808569, 10.4064/sm-81-3-271-284
Reference: [H2] H. Hudzik: Every nonreflexive Banach lattice has the packing constant equal to $\frac{1}{2}$.Collect. Math. 44 (1993), 129–134. MR 1280732
Reference: [HM] H. Hudzik and M. Mastyło: Almost isometric copies of $l_\infty $ in some Banach spaces.Proc. Amer. Math. Soc. 119.1 (1993), 209–215. MR 1146861
Reference: [Ka] A. Kamińska: On uniform convexity of Orlicz spaces.Indagationes Math. 44 (1982), 27–36. MR 0653453, 10.1016/1385-7258(82)90005-1
Reference: [k] L.V. Kantorovich and G. P. Akilov: Functional Analysis.Nauka Moscow, 1977. (Russian) MR 0511615
Reference: [Ko] C.A. Kottman: Packing and reflexivity in Banach spaces.Trans. Amer. Math. Soc. 150 (1970), 565–576. Zbl 0208.37503, MR 0265918, 10.1090/S0002-9947-1970-0265918-7
Reference: [KR] M.A. Krasnoselskii and Ya. B. Rutickii: Convex Functions and Orlicz Spaces.Nordhoff Groningen, 1961.
Reference: [Ku] D.N. Kutzarowa: An isomorphic characterization of property $(\beta )$ of Rolewicz.Note Mat. 10.2 (1990), 347–354. MR 1204212
Reference: [KMP] D.N. Kutzarowa, E. Maluta and S. Prus: Property ($\beta $) implies normal structure of the dual space.Rend. Circ. Math. Palermo, 41 (1992), 335–368. MR 1230583
Reference: [LT] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces II.vol. 338, Lecture Notes in Math. 338, 1973. MR 0415253
Reference: [L] W.A.J. Luxemburg: Banach Function Spaces.Thesis, Delft, 1955. Zbl 0068.09204, MR 0072440
Reference: [M] J. Musielak: Orlicz Spaces and Modular Spaces.Lecture Notes in Math. 1034, 1983. Zbl 0557.46020, MR 0724434
Reference: [RAO] M.M. Rao and Z. D. Ren: Theory of Orlicz Spaces.Marcel Dekker Inc., New York, Basel, Hong Kong, 1991. MR 1113700
Reference: [R2] S. Rolewicz: On $\Delta $-uniform convexity and drop property.Studia Math. 87 (1987), 181–191. Zbl 0652.46010, MR 0928575, 10.4064/sm-87-2-181-191
Reference: [W] T.F. Wang: Packing sphere of Orlicz sequence spaces equipped with Orlicz norm.Chinese Ann. Math. 6A:5 (1985), 567–574.
Reference: [Y] Y.I. Ye: Packing spheres in Orlicz sequence spaces.Chinese Ann. Math. 4A (1983), 487–493. Zbl 0544.46004, MR 0741885
.

Files

Files Size Format View
CzechMathJ_49-1999-2_8.pdf 377.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo