Previous |  Up |  Next

Article

Title: Unique solvability of a linear problem with perturbed periodic boundary values (English)
Author: Mehri, Bahman
Author: Nojumi, Mohammad H.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 2
Year: 1999
Pages: 351-362
Summary lang: English
.
Category: math
.
Summary: We investigate the problem with perturbed periodic boundary values \[ \left\rbrace \begin{array}{ll}y^{\prime \prime \prime }(x) + a_2(x) y^{\prime \prime }(x) + a_1(x) y^{\prime }(x) + a_0(x) y(x) = f(x) , y^{(i)}(T) = c y^{(i)}(0), \ i = 0, 1, 2; \ 0 < c < 1 \end{array}\right.\] with $a_2, a_1, a_0 \in C[0,T]$ for some arbitrary positive real number $T$, by transforming the problem into an integral equation with the aid of a piecewise polynomial and utilizing the Fredholm alternative theorem to obtain a condition on the uniform norms of the coefficients $a_2$, $a_1$ and $a_0$ which guarantees unique solvability of the problem. Besides having theoretical value, this problem has also important applications since decay is a phenomenon that all physical signals and quantities (amplitude, velocity, acceleration, curvature, etc.) experience. (English)
Keyword: Ordinary differential equations
Keyword: integral equations
Keyword: periodic boundary value problems
MSC: 34B05
MSC: 34B15
MSC: 34C10
MSC: 45B05
idZBL: Zbl 0955.34007
idMR: MR1692528
.
Date available: 2009-09-24T10:23:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127493
.
Reference: [1] H. Brezis: Analyse Fonctionnelle, Théorie et Applications.Masson, Paris, 1983. Zbl 0511.46001, MR 0697382
Reference: [2] R. Brown: A Topological Introduction to Nonlinear Analysis.Birkhäuser, Boston, 1993. Zbl 0794.47034, MR 1232418
Reference: [3] J. A. Cochran: Analysis of Linear Integral Equations.McGraw Hill, New York, 1972. Zbl 0233.45002, MR 0447991
Reference: [4] R. Kress: Linear Integral Equations.Springer-Verlag, New York, 1989. Zbl 0671.45001, MR 1007594
Reference: [5] M. Reed, and B. Simon: Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis.Academic Press, Orlando, Florida, 1980. MR 0751959
.

Files

Files Size Format View
CzechMathJ_49-1999-2_12.pdf 350.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo