Article
Summary:
It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger.
References:
                        
[2] J. Diestel, J.J. Uhl, Jr.: 
Vector measures. Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977. 
MR 0453964[5] V. Kordula, V. Müller: 
The distance from the Apostol spectrum. Proc. Amer. Math. Soc. (to appear). 
MR 1322931[6] M. Mbekhta: 
Résolvant généralisé et théorie spectrale. J. Operator Theory 21 (1989), 69–105. 
MR 1002122 | 
Zbl 0694.47002[7] V. Müller: 
On the regular spectrum. J. Operator Theory (to appear). 
MR 1331783[9] P. Saphar: 
Contributions à l’étude des applications linéaires dans un espace de Banach. Bull. Soc. Math. France 92 (1964), 363–384. 
DOI 10.24033/bsmf.1612 | 
MR 0187095[11] N. Tomczak-Jaegermann: 
Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific & Technical, Harlow, 1989. 
MR 0993774 | 
Zbl 0721.46004