Article
Summary:
It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger.
References:
[2] J. Diestel, J.J. Uhl, Jr.:
Vector measures. Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977.
MR 0453964
[5] V. Kordula, V. Müller:
The distance from the Apostol spectrum. Proc. Amer. Math. Soc. (to appear).
MR 1322931
[6] M. Mbekhta:
Résolvant généralisé et théorie spectrale. J. Operator Theory 21 (1989), 69–105.
MR 1002122 |
Zbl 0694.47002
[7] V. Müller:
On the regular spectrum. J. Operator Theory (to appear).
MR 1331783
[9] P. Saphar:
Contributions à l’étude des applications linéaires dans un espace de Banach. Bull. Soc. Math. France 92 (1964), 363–384.
DOI 10.24033/bsmf.1612 |
MR 0187095
[11] N. Tomczak-Jaegermann:
Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific & Technical, Harlow, 1989.
MR 0993774 |
Zbl 0721.46004